全部产品分类
混合立方体半镜HBCH W3013 光学透镜

混合立方体半镜HBCH W3013

分类: 光学透镜

厂家: OptoSigma Corp

产地: 美国

型号: Hybrid Cube Half Mirrors HBCH W3013

更新时间: 2025-01-15 10:38:04

激光器 光学元件 可见光 偏振 红外光

立即咨询 获取报价 获取报价 下载规格书 下载规格书
收藏 收藏

概述

Hybrid Cube Half Mirrors HBCH Catalog W3013,适用于宽带可见光和红外光的低偏振立方半镜,广泛应用于偏振系统和激光器。

参数

  • 基材 / Base Material : BK7
  • 手动 / Manual : <5′
  • 阶段 / Stages : 1:1
  • 镀膜 / Coating : λ/4
  • 入射角 / Incident Angle : 0°
  • 能量密度 / Energy Density : 0.3J/cm2

应用

1. 偏振系统 2. 激光器 3. 多波长光源 4. 可见光应用

特征

1. 低偏振特性 2. 适用于宽带光 3. 多波长兼容性 4. 轻便易于安装

详述

Hybrid Cube Half Mirrors HBCH Catalog W3013 是一款高性能的低偏振立方半镜,专为宽带可见光和红外光设计。它们在偏振系统和激光应用中表现出色,能够有效处理多波长光源。其独特的设计确保了良好的光学性能与高透过率,使其成为实验室和工业应用的理想选择。该产品采用BK7基材,具有优异的机械和光学特性,确保了在各种环境下的可靠性和耐用性。无论是在科研还是在实际应用中,HBCH系列半镜都能提供稳定的性能和优质的结果,是光学系统中不可或缺的重要组件。

图片集

Hybrid Cube Half Mirrors HBCH   W3013图1

规格书

下载规格书

厂家介绍

OptoSigma是全球领先的光学系统、光学组件、光学涂层、光学机械、手动和运动控制平台以及各种免费光子学产品的制造商。我们拥有超过19,000个标准项目,提供广泛的高品质产品,我们还制造定制解决方案,以支持各种行业,包括生命科学、生物医疗、半导体、显示器、研究、电信、航空航天和国防。“ OptoSigma ”诞生于1995年,是一家加利福尼亚公司,是日本东京Sigmakoki有限公司的子公司。Sigmakoki于1977年诞生于日本。今天,OptoSigma是我们的全球品牌,在法国、德国、新加坡和中国都有分支机构。我们一起被称为“ Sigmakoki集团”,我们拥有超过40年的经验和计数。我们的座右铭遵循三个重要的词:欣赏、挑战和创造。通过创造,我们遵循一个日语单词“ monozukuri ”,它可以被定义为制造的艺术、科学和工艺。通过“ Monozukuri ”,我们采用较高质量标准的工艺,并继续寻求改进我们的流程、效率和方法的方法,这一切都是为了我们较优先考虑的利益,即您,“我们的客户”。我们努力挑战自我,创造解决方案,使新技术能够创造更美好的明天和更光明的未来。在本页中,您将能够更深入地了解我们的历史、我们的价值观和我们的能力。如果您需要任何其他信息,请不要犹豫,进一步询问!OptoSigma是全球领先的光学系统、光学组件、光学涂层、光学机械、手动和运动控制平台以及各种免费光子学产品的制造商。我们拥有超过19,000个标准项目,提供广泛的高品质产品,我们还制造定制解决方案,以支持各种行业,包括生命科学、生物医疗、半导体、显示器、研究、电信、航空航天和国防。“ OptoSigma ”诞生于1995年,是一家加利福尼亚公司,是日本东京Sigmakoki有限公司的子公司。Sigmakoki于1977年诞生于日本。如今,OptoSigma是我们的全球品牌,在法国、德国、新加坡和中国都有分支机构。我们一起被称为“ Sigmakoki集团”,我们拥有超过40年的经验和计数。我们的座右铭遵循三个重要的词:欣赏、挑战和创造。通过创造,我们遵循一个日语单词“ monozukuri ”,它可以被定义为制造的艺术、科学和工艺。通过“ Monozukuri ”,我们采用较高质量标准的工艺,并继续寻求改进我们的流程、效率和方法的方法,这一切都是为了我们较优先考虑的利益,即您,“我们的客户”。我们努力挑战自我,创造解决方案,使新技术能够创造更美好的明天和更光明的未来。在本页中,您将能够更深入地了解我们的历史、我们的价值观和我们的能力。如果您需要任何其他信息,请不要犹豫,进一步询问!

相关产品

图片 名称 分类 制造商 参数 描述

相关文章

  • 新方法最大限度地减少了微透镜阵列生产中的对准误差

    双面微透镜阵列(DSMLAs)在提高光学器件性能方面发挥着至关重要的作用,支持从先进成像系统到激光束均匀化的应用。然而,传统的制造方法经常与校准误差作斗争,这会降低这些阵列的功能和效率。

  • 什么是朗伯余弦定律(Lambert's Cosine Law)?

    朗伯余弦定律指出,来自理想的漫反射表面的辐射强度与入射光线方向和表面法线之间的角度θ的余弦成正比。

  • 利用宽带消色差和偏振不敏感金属透镜提高图像质量

    对光的精确控制是光学成像、传感和通信的一项关键要求。为此采用的传统透镜有其局限性,需要更精确、更紧凑的解决方案。为了满足这一需求,研究人员开发出了金属透镜,即由尺寸小于光波长的纳米材料制成的超薄透镜。

  • 新型光学微透镜:具有高数值孔径和高聚焦效率的混合消色差微透镜

    伊利诺伊大学厄巴纳-香槟分校的研究人员利用三维打印技术和多孔硅,开发出了小型可见光波长消色差透镜,这对于实现光学器件的小型化和轻量化至关重要。这些高性能混合微光学器件可实现高聚焦效率,同时最大限度地减少体积和厚度。此外,这些微透镜还可以构成阵列,为消色差光场成像仪和显示器形成更大面积的图像。

立即咨询

加载中....