紧凑型光子芯片的精确热控制:玻璃基板集成微热电冷却器(SimTEC)
光子学提供了各种优势,包括通过利用光特性在光学数据通信、生物医学应用、汽车技术和人工智能领域实现高速低损耗通信。这些优势是通过复杂的光子电路实现的,包括集成在光子芯片上的各种光子元件。
光学相干断层扫描 光纤尾纤 光学传感 医学成像 可调谐激光器 高对比度光栅
1060纳米可调谐VCSEL尾纤TOSA
光电查精品推荐
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
应用
1. 光学相干断层扫描(OCT) 2. 扫描源 3. 医学成像 4. 光学传感 5. 可调谐二极管激光吸收光谱(TDLAS)
特征
1. TO-56 7针小型封装 2. 永久连接的0.75m ±0.1m 900µm光纤尾纤,带FC/APC连接器 3. 集成TEC(温度稳定) 4. 集成光隔离器 5. 最低连续波光功率为0.05mW(@25°C TEC温度,调谐范围内) 6. 单模、单波瓣VCSEL 7. 波长调谐范围:高达50+nm 8. 快速波长调谐+200 kHz
详述
规格书
厂家介绍
相关产品
输出功率: 100mW
Qioptiq iFLEX虹膜™固态激光系统在小型封装中提供高性能稳定性和低振幅噪声。它们非常适合集成到要求高性能但需要保持较小形状系数的仪器中。由于主动温度控制,激光器无模式跳变,波长稳定。所有CW iFLEX iRIS激光器都使用内部反馈回路在自动功率控制模式下工作。此功能可提供高度稳定的输出功率,并确保在产品的整个使用寿命内保持高功率稳定性。
输出功率: 100mW
Qioptiq iFlex-IRIS™固态激光系统在小型化封装中提供高性能稳定性和低振幅噪声。它们非常适合集成到需要高性能但又需要保持小尺寸的仪器中。作为主动温度控制的结果,激光器是无跳模和波长稳定的。所有CW IFLEX-IRIS激光器均使用内部反馈回路在自动功率控制模式下工作。此功能提供高度稳定的输出功率,并确保在整个产品生命周期内保持高功率稳定性能。
输出功率: 59.3mW
10.26μm分布反馈(DFB)QCL.
波长: 1030nm 输出功率: 280mW
创新的光子解决方案单模波长稳定激光器具有高输出功率、超窄光谱带宽和衍射受限的输出光束。单模光谱稳定激光器专为取代昂贵的DFB、DBR、光纤和外腔激光器而设计,在时间、温度(0.007 nm/0C)和振动方面具有出色的波长稳定性,并且可满足较苛刻的波长要求。单模光谱稳定激光器的波长范围为633 nm–2400 nm(上述标准波长),采用14引脚蝶形封装、集成OEM模块或带有用户可配置温度和功率控制电子设备的完全集成模块。激光波长可以精确指定并重复制造到0.1nm以内。该激光器是高分辨率拉曼光谱、共焦显微镜、直接二极管倍频、激光播种、气体传感、计量和遥感应用的理想选择。
波长: 1053nm 输出功率: 300mW
创新的光子解决方案单模波长稳定激光器具有高输出功率、超窄光谱带宽和衍射受限的输出光束。单模光谱稳定激光器专为取代昂贵的DFB、DBR、光纤和外腔激光器而设计,在时间、温度(0.007 nm/0C)和振动方面具有出色的波长稳定性,并且可满足较苛刻的波长要求。单模光谱稳定激光器的波长范围为633 nm–2400 nm(上述标准波长),采用14引脚蝶形封装、集成OEM模块或带有用户可配置温度和功率控制电子设备的完全集成模块。激光波长可以精确指定并重复制造到0.1nm以内。该激光器是高分辨率拉曼光谱、共焦显微镜、直接二极管倍频、激光播种、气体传感、计量和遥感应用的理想选择。
相关文章
紧凑型光子芯片的精确热控制:玻璃基板集成微热电冷却器(SimTEC)
光子学提供了各种优势,包括通过利用光特性在光学数据通信、生物医学应用、汽车技术和人工智能领域实现高速低损耗通信。这些优势是通过复杂的光子电路实现的,包括集成在光子芯片上的各种光子元件。
在斯特拉斯克莱德大学领导的研究中,能够反射或操纵光线的激光驱动的 "镜子 "已经产生。
由中国科学院长春光学精密机械与物理研究所的研究人员领导的一项研究揭示了一种新的金属-介电膜模式滤波器结构,可以灵活地调节垂直腔面发射激光器(VCSELs)的横向模式,这表明金属孔径在增强VCSELs内部模式控制方面的潜力。这项研究发表在《传感器》杂志上。
在一定条件下,数千个光粒子可以融合成一种“超级光子”。波恩大学的研究人员现在已经能够使用“微小的纳米模具”来影响这种所谓的玻色-爱因斯坦凝聚物的设计。这使他们能够将光斑塑造成一个简单的晶格结构,由四个以二次型排列的光点组成。
加载中....