基于二维肖特基结的光电探测器的最新进展,这些探测器具有高灵敏度、自驱动工作和快速响应的特点。与传统的大块肖特基结光电探测器相比,二维肖特基结器件有望具有更低的暗电流。
光电查精品推荐
- 专业选型
- 正规认证
- 品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 光电探测器类型 / Photodetector Type : Avalanche
- 光电二极管材料 / Photodiode Material : GaAs
- 波长范围 / Wavelength Range : 320 to 900 nm
- 上升时间 / Rise Time : 30 ps
- 暗电流 / Dark Current : 0.1 nA
- 窗口材料 / Window Material : Polished, Glass
- 有效面积直径 / Active Area Diameter : 0.04 mm
应用
1. 脉冲波形测量 2. 脉冲持续时间测量 3. 精确同步 4. 模式拍频监测 5. 外差测量
特征
1. 超高速操作 2. 上升时间短至15 ps 3. 带宽高达25 GHz 4. 光谱范围从170 nm到2600 nm 5. 紧凑设计 6. 电池或外部电源供电 7. 适用于自由空间光束、FC/PC接口或带SM光纤的光电探测器
详述
规格书
厂家介绍
AlphaLas GmbH是一家德国激光制造商。作为一家高科技激光公司,我们在激光、光学和激光相关电子领域提供广泛的产品。
智推产品
相关产品
-
双色比的光纤红外测温和控制系统iR2
光电探测器
Newport Electronics Inc
探测器类型: Thermal Absorber (thermopile) 光谱范围: 0.8 - 1.7 um 尺寸: 62mm
Newport©IR2™系列是较先进的仪器,适用于困难和苛刻的高温(300°C-3000°C)应用。它非常适合涉及金属、玻璃、半导体等的测量和控制应用。IR2速度极快,精度极高,响应时间为10毫秒,精度为满量程的0.2%。尽管IR2具有非凡的技术先进性和性能,但它也具有令人难以置信的用户友好性和简单的配置。IR2享有5年延长保修。
-
25 Gbit-s p-i-n光电二极管芯片和光电二极管阵列芯片850纳米
光电探测器
Connector Optics LLC
二极管类型: InGaAs 工作波长: 850nm
我们的紧凑型、顶部发光、低电容、高速GaAs基p-I-n光电二极管(PD)芯片和PD阵列芯片可作为工程样品提供,非常适合850 nm范围的光数据通信系统、光学互连和一般研发应用。PDS具有一系列光学孔径直径(15至50µm),既可作为单独的芯片,也可作为1×N(N=1,2,4,12)线性阵列,允许与单模或多模BER对准。坚固的PD芯片可以是线或IP芯片键合的。
-
4、8、12或16个元素的单片线性阵列
光电探测器
GPD Optoelectronics Corp
二极管类型: Other 工作波长: 1650nm
线性阵列
-
AP-15G 用于1-3.1微米的PbS检测器
光电探测器
AP Technologies Ltd
二极管类型: PbS 工作波长: 1000nm
A系列单通道红外探测器集成了PBS技术和成熟的制造工艺,可在1至3微米的光谱范围内提供较高灵敏度的探测器。此外,该产品线较大限度地降低了维护成本,并以行业领先的质量、耐用性和可靠性提供可靠的操作。当今许多要求苛刻的应用,包括工业、环境和医疗应用,都需要高性能。A系列红外探测器在更紧密的光谱带中提供更高的灵敏度,满足探测痕量元素、气体、火灾、火焰和排放物的挑战。
-
用于1-3.1微米的AP-25G铅酸蓄电池检测器
光电探测器
AP Technologies Ltd
二极管类型: PbS 工作波长: 1000nm
A系列单通道红外探测器集成了PBS技术和成熟的制造工艺,可在1至3微米的光谱范围内提供较高灵敏度的探测器。此外,该产品线较大限度地降低了维护成本,并以行业领先的质量、耐用性和可靠性提供可靠的操作。当今许多要求苛刻的应用,包括工业、环境和医疗应用,都需要高性能。A系列红外探测器在更紧密的光谱带中提供更高的灵敏度,满足探测痕量元素、气体、火灾、火焰和排放物的挑战。
相关文章
-
-
光电探测器也被称为光敏器,将光能转变为电信号。多年来,科学家们一直设想开发新型检测器,以发展卓越的太阳能电池。
-
混合过氧化物材料被广泛认为对下一代光子技术有重大的实际影响。由于其独特和更好的光电特性,铅基材料是最常见的。然而,人们认为铅的毒性很高,这可能会减缓甚至阻碍商业化的速度,因此对这些器件中存在的铅提出了一些质疑。
-
这项题为 "具有增强的B-外激子发射和宽光谱响应的V-掺杂MoS2单层的气相生长 "的研究成果于2023年12月7日发表在《光电子学前沿》(Frontiers of Optoelectronics)上。这项研究为不断发展的二维半导体及其对光电技术的潜在影响提供了宝贵的见解。
加载中....