单频半导体激光器研究取得进展:氮化硅微谐振器大大提高半导体激光器性能
洛桑联邦理工学院(EPFL)光子系统实验室(PHOSL)的团队开发出了一种芯片级激光源,在提高半导体激光器性能的同时,还能产生更短的波长。 这项开创性工作由Camille Brès教授和来自洛桑联邦理工学院工程学院的博士后研究员Marco Clementi领导,是光子学领域的重大进展,对电信、计量学和其他高精度应用具有重要意义。
概述
参数
规格书
厂家介绍
相关产品
输出功率: 100mW
Qioptiq iFLEX虹膜™固态激光系统在小型封装中提供高性能稳定性和低振幅噪声。它们非常适合集成到要求高性能但需要保持较小形状系数的仪器中。由于主动温度控制,激光器无模式跳变,波长稳定。所有CW iFLEX iRIS激光器都使用内部反馈回路在自动功率控制模式下工作。此功能可提供高度稳定的输出功率,并确保在产品的整个使用寿命内保持高功率稳定性。
输出功率: 100mW
Qioptiq iFlex-IRIS™固态激光系统在小型化封装中提供高性能稳定性和低振幅噪声。它们非常适合集成到需要高性能但又需要保持小尺寸的仪器中。作为主动温度控制的结果,激光器是无跳模和波长稳定的。所有CW IFLEX-IRIS激光器均使用内部反馈回路在自动功率控制模式下工作。此功能提供高度稳定的输出功率,并确保在整个产品生命周期内保持高功率稳定性能。
输出功率: 59.3mW
10.26μm分布反馈(DFB)QCL.
波长: 1030nm 输出功率: 280mW
创新的光子解决方案单模波长稳定激光器具有高输出功率、超窄光谱带宽和衍射受限的输出光束。单模光谱稳定激光器专为取代昂贵的DFB、DBR、光纤和外腔激光器而设计,在时间、温度(0.007 nm/0C)和振动方面具有出色的波长稳定性,并且可满足较苛刻的波长要求。单模光谱稳定激光器的波长范围为633 nm–2400 nm(上述标准波长),采用14引脚蝶形封装、集成OEM模块或带有用户可配置温度和功率控制电子设备的完全集成模块。激光波长可以精确指定并重复制造到0.1nm以内。该激光器是高分辨率拉曼光谱、共焦显微镜、直接二极管倍频、激光播种、气体传感、计量和遥感应用的理想选择。
波长: 1053nm 输出功率: 300mW
创新的光子解决方案单模波长稳定激光器具有高输出功率、超窄光谱带宽和衍射受限的输出光束。单模光谱稳定激光器专为取代昂贵的DFB、DBR、光纤和外腔激光器而设计,在时间、温度(0.007 nm/0C)和振动方面具有出色的波长稳定性,并且可满足较苛刻的波长要求。单模光谱稳定激光器的波长范围为633 nm–2400 nm(上述标准波长),采用14引脚蝶形封装、集成OEM模块或带有用户可配置温度和功率控制电子设备的完全集成模块。激光波长可以精确指定并重复制造到0.1nm以内。该激光器是高分辨率拉曼光谱、共焦显微镜、直接二极管倍频、激光播种、气体传感、计量和遥感应用的理想选择。
相关文章
单频半导体激光器研究取得进展:氮化硅微谐振器大大提高半导体激光器性能
洛桑联邦理工学院(EPFL)光子系统实验室(PHOSL)的团队开发出了一种芯片级激光源,在提高半导体激光器性能的同时,还能产生更短的波长。 这项开创性工作由Camille Brès教授和来自洛桑联邦理工学院工程学院的博士后研究员Marco Clementi领导,是光子学领域的重大进展,对电信、计量学和其他高精度应用具有重要意义。
用于物体分类任务的轨道-角动量编码衍射网络
当光穿过一种材料时,它的行为往往是不可预测的。这种现象是一个叫做“非线性光学”的整个研究领域的主题,现在从激光开发和光学频率计量到引力波天文学和量子信息科学,非线性光学已经成为技术和科学进步的一部分。
光纤激光器以其高光束质量、高效率和紧凑设计在工业制造、医疗和科研等领域展现出巨大潜力。这些激光器通过稀土掺杂光纤实现高功率密度和粒子数反转,提供单横模输出和优异的电光转换效率。随着技术进步,光纤激光器的应用范围不断扩大,特别是在高反材料加工和精密手术中显示出显著优势。
加载中....