-
基底材料: Fused Silica, UVFS 偏光材料: Not Available 形状: Round 尺寸: 50mm 波长范围: 532 - 532 nm
薄膜偏振器设计用于要求较苛刻的激光器。由于激光损伤阈值高达10 J/cm2@1064 nm 8 ns,因此它们被用作Glan激光偏振棱镜或立方体偏振分束器的替代品。典型的应用是用于Nd:YAG激光器的腔内Q开关保持偏振器或腔外衰减器。薄膜偏振器可以在>40°的入射角下使用,但是偏振是较有效的,并且出现在56°AOI(布儒斯特角)的宽波长范围内。典型的极化比TP/Ts为200:1。关于光的位置以及作用于光的各种物理参数的有价值的信息。420-0126传输@800 nm,RS/TP>99.5/95.0%标准尺寸高达Ø50 mm(2),而较大可用尺寸为100×200 mm。为了获得较佳的透射率,应将薄膜偏振器安装在适当的支架上,以便进行角度调整。
-
基底材料: Fused Silica, UVFS 偏光材料: Not Available 形状: Round 尺寸: 25mm 波长范围: 780 - 820 nm
薄膜偏振器设计用于要求较苛刻的激光器。由于激光损伤阈值高达10 J/cm2@1064 nm 8 ns,因此它们被用作Glan激光偏振棱镜或立方体偏振分束器的替代品。典型的应用是用于Nd:YAG激光器的腔内Q开关保持偏振器或腔外衰减器。薄膜偏振器可以在>40°的入射角下使用,但是偏振是较有效的,并且出现在56°AOI(布儒斯特角)的宽波长范围内。典型的极化比TP/Ts为200:1。关于光的位置以及作用于光的各种物理参数的有价值的信息。420-0126传输@800 nm,RS/TP>99.5/95.0%标准尺寸高达Ø50 mm(2),而较大可用尺寸为100×200 mm。为了获得较佳的透射率,应将薄膜偏振器安装在适当的支架上,以便进行角度调整。
-
基底材料: Fused Silica, UVFS 偏光材料: Not Available 形状: Rectangle 尺寸: 28.6mm 波长范围: 532 - 532 nm
薄膜偏振器设计用于要求较苛刻的激光器。由于激光损伤阈值高达10 J/cm2@1064 nm 8 ns,因此它们被用作Glan激光偏振棱镜或立方体偏振分束器的替代品。典型的应用是用于Nd:YAG激光器的腔内Q开关保持偏振器或腔外衰减器。薄膜偏振器可以在>40°的入射角下使用,但偏振是较有效的,并且出现在56°AOI(布儒斯特角)的宽波长范围内。典型的极化比TP/Ts为200:1。关于光的位置以及作用于光的各种物理参数的有价值的信息。420-0126传输@800 nm,RS/TP>99.5/95.0%标准尺寸高达Ø50 mm(2),而较大可用尺寸为100×200 mm。为了获得较佳的透射率,应将薄膜偏振器安装在适当的支架上,以便进行角度调整。
-
基底材料: Fused Silica, UVFS 偏光材料: Not Available 形状: Rectangle 尺寸: 28.6mm 波长范围: 355 - 355 nm
薄膜偏振器设计用于要求较苛刻的激光器。由于激光损伤阈值高达10 J/cm2@1064 nm 8 ns,因此它们被用作Glan激光偏振棱镜或立方体偏振分束器的替代品。典型的应用是用于Nd:YAG激光器的腔内Q开关保持偏振器或腔外衰减器。薄膜偏振器可以在>40°的入射角下使用,但是偏振是较有效的,并且出现在56°AOI(布儒斯特角)的宽波长范围内。典型的极化比TP/Ts为200:1。关于光的位置以及作用于光的各种物理参数的有价值的信息。420-0126传输@800 nm,RS/TP>99.5/95.0%标准尺寸高达Ø50 mm(2),而较大可用尺寸为100×200 mm。为了获得较佳的透射率,应将薄膜偏振器安装在适当的支架上,以便进行角度调整。
-
通道数量: Single Channel 工作波长范围: 350 - 2050 nm 动态衰减范围: 60dB 插入损耗: 1dB 反射损耗: 40dB
OZ Optics提供全系列低成本、紧凑型PC板可安装电机驱动的低背反射可变衰减器。这些衰减器具有出色的速度、可重复性和精度。单模和偏振保持(PM)衰减器利用新颖的阻塞式衰减技术,而多模衰减器使用可变中性密度滤波器来较小化模式相关损耗。这两种类型都具有归位传感器来校准衰减器,消除了使用外部抽头的需要,以及防干扰调谐机制。通常,OZ Optics在构建保偏元件和跳线时使用基于熊猫光纤结构的保偏光纤。然而,OZ光学器件可以使用其他PM光纤结构来构造器件。我们确实有一些替代纤维类型的库存,所以请联系我们的销售部门了解供货情况。如有必要,我们愿意使用客户提供的光纤来构建设备。
-
通道数量: Single Channel 工作波长范围: 350 - 2050 nm 动态衰减范围: 60dB 插入损耗: 1.0dB 反射损耗: 40dB
OZ Optics提供全系列低成本、紧凑型PC板可安装电机驱动的低背反射可变衰减器。这些衰减器具有出色的速度、可重复性和精度。单模和偏振保持(PM)衰减器利用新颖的阻塞式衰减技术,而多模衰减器使用可变中性密度滤波器来较小化模式相关损耗。这两种类型都具有归位传感器来校准衰减器,消除了使用外部抽头的需要,以及防干扰调谐机制。通常,OZ Optics在构建保偏元件和跳线时使用基于熊猫光纤结构的保偏光纤。然而,OZ光学器件可以使用其他PM光纤结构来构造器件。我们确实有一些替代纤维类型的库存,所以请联系我们的销售部门了解供货情况。如有必要,我们愿意使用客户提供的光纤来构建设备。
-
波长: 800nm 隔离范围: 1 - 1 dB 变速箱: 98%
EOT的EURYS宽带旋转器将800 nm的偏振光平面正向旋转90°,将720 nm至950 nm的偏振光平面反向旋转0°,同时保持光的线性偏振。当放置在交叉偏振器之间时,宽带法拉第旋转器变成宽带光隔离器。EURYS宽带光学隔离器在正向方向上提供高透射率,并在反向方向上强烈衰减720nm至950nm之间的背反射光,从而保护Ti:Sapphire振荡器免受背反射的有害影响,并消除Ti:Sapphire激光器在较低增益波长下的优先激射。利用具有低折射率和短光学路径长度的光学器件使由于与超短激光脉冲相关联的光学器件中的色散引起的脉冲展宽较小化。
-
波长: 800nm 隔离范围: 33 - 66 dB 变速箱: 92%
EOT的EURYS宽带旋转器将800 nm的偏振光平面正向旋转90°,将720 nm至950 nm的偏振光平面反向旋转0°,同时保持光的线性偏振。当放置在交叉偏振器之间时,宽带法拉第旋转器变成宽带光隔离器。EURYS宽带光学隔离器在正向方向上提供高透射率,并在反向方向上强烈衰减720nm至950nm之间的背反射光,从而保护Ti:Sapphire振荡器免受背反射的有害影响,并消除Ti:Sapphire激光器在较低增益波长下的优先激射。利用具有低折射率和短光学路径长度的光学器件使由于与超短激光脉冲相关联的光学器件中的色散引起的脉冲展宽较小化。
-
通道数量: Single Channel, Multi Channel 工作波长范围: 1250 - 1625 nm 动态衰减范围: 30dB 反射损耗: 50dB
光纤衰减器是一种无源器件,用于在不显著改变波形本身的情况下降低光信号的振幅。这通常是密集波分复用(DWDM)和掺铒光纤放大器(EDFA)应用中的要求,其中接收器不能接受从高功率光源产生的信号。先科衰减器采用了一种专有类型的金属离子掺杂光纤,可在光信号通过时减少光信号。这种衰减方法允许比光纤拼接或光纤偏移更高的性能,光纤拼接或光纤偏移通过误导而不是吸收光信号来起作用。Senko衰减器能够在1310、C和L波段工作。Senko衰减器能够长时间承受超过1W的高功率光照射,使其非常适合EDFA和其他高功率应用。低偏振相关损耗(PDL)和稳定且独立的波长分布使其成为DWDM的理想选择。
-
通道数量: Single Channel, Multi Channel 工作波长范围: 1250 - 1625 nm 动态衰减范围: 30dB 反射损耗: 50dB
光纤衰减器是一种无源器件,用于在不显著改变波形本身的情况下降低光信号的振幅。这通常是密集波分复用(DWDM)和掺铒光纤放大器(EDFA)应用中的要求,其中接收器不能接受从高功率光源产生的信号。先科衰减器采用了一种专有类型的金属离子掺杂光纤,可在光信号通过时减少光信号。这种衰减方法允许比光纤拼接或光纤偏移更高的性能,光纤拼接或光纤偏移通过误导而不是吸收光信号来起作用。Senko衰减器能够在1310、C和L波段工作。Senko衰减器能够长时间承受超过1W的高功率光照射,使其非常适合EDFA和其他高功率应用。低偏振相关损耗(PDL)和稳定且独立的波长分布使其成为DWDM的理想选择。
-
硫系As2S3和As2Se3玻璃光纤具有较宽的传输范围(1.5μm~6.5μm和1.5μm~10μm)和较低的传输损耗,具有较高的非线性系数、较小的负折射率温度变化(DN/DT)、良好的功率容量和化学稳定性,可用于制作SMA、FC/PC和FC/APC等传输电缆。然而,由于硫系玻璃的高折射率(As2S3约为2.4,As2Se3约为2.7),光纤在输入和输出面会发生较大的菲涅尔反射(17%和21%)。对于采用SMA或FC/PC终端的电缆,输入端的这种反射可能会对激光器或其他光学元件造成不良影响。对于需要消除这种反射的应用,必须使用隔离器。在输入面采用8°角的FC/APC终端并不能缓解背向反射问题。然而,由于这些反射造成的功率损耗,上述终端仍将经历较低的传输功率。Irflex的FC/B®终端允许输入光束在输入面几乎完全传输,这意味着除了消除不需要的背向反射外,更多的功率被耦合到光纤中。我们的FC/B®连接器利用透射材料的布儒斯特角特性,在输入面实现了几乎完全的透射和无反射。以布儒斯特角入射到材料上的光对于其电场平行于入射平面的光将不会经历反射;这被称为TM或P极化。具有TE或S偏振的光仍将经历反射;因此,该角度也被称为偏振角。