-
分类:晶体水晶类型: LiNbO3 (Lithium Niobate) 宽度: 9mm 高度: 9mm 长度: 5mm 平整度: <= Lambda/8
周期性极化铌酸锂(PPLN)是一种高效的非线性波长转换晶体,具有很宽的光透射范围,覆盖了近红外和中红外光谱区域,可用于倍频(SHG)、信号光(SFG)、光学参量振荡(OPO)以及从可见光到中红外的其他非线性过程。以满足现代光学对激光波长多样性的要求。通过周期结构的设计,可以实现透过率范围内任意波长的输出。PPLN晶体在激光显示、环境探测、中红外光谱、全光波长转换、光学传感等领域有着广泛的应用。在保持较高的非线性系数的同时,通过MgO掺杂可以大幅度提高晶体的光损伤阈值和光折变阈值。与相同组分的PPLN相比,MgO:PPLN晶体可以在更低的温度和可见光范围内稳定工作。
-
单色仪类型: Flat Field Grazing Incidence 衍射光栅: 484lines/mm 光栅炽热波长: 1200nm 光谱范围: 960 - 1690 nm 光谱分辨率: 8nm
PGS系列光谱仪设计用于NIR。InGaAs(砷化铟镓)用作该波长范围内的检测器材料。非球面准直器和聚焦透镜的特殊组合允许使用为NIR优化的平面光栅,同时保持光谱成像的良好平场校正。所有光学元件的永久连接确保了出色的长期稳定性。中心体在PGS系列中,中心体采用特殊铝合金(膨胀系数a~13 X 10-6)。该外壳是闪耀光栅、非球面准直器和聚焦透镜的载体。输入光纤和检测器永久连接到中心体,因此提供了极好的稳定性。光栅用于PGS系列的光栅是机械刻划的或全息记录的平面光栅。较大效率适用于NIR中的特定波长范围。具有透镜的清晰直径的光栅表面的尺寸使得NA高达0.37的光纤的光可以看到。输入光纤光的耦合通过玻璃单光纤以标准方式进行。这些光纤的直径为600µm,NA=0.22。光纤末端具有高度为500µm(NIR 1.7)或250µm(NIR 2.2)的狭缝。入口处的狭缝高度适应于InGaAs阵列的像素高度。不需要类似于硅探测器的截面转换。探测器对于PGS,NIR 1.7标准InGaAs用于高达1700nm的波长范围。可提供具有256或512个元件的探测器。要达到2.2µm的波长范围,必须使用扩展InGaAs。在PGS NIR 2.0和PGS NIR 2.2中,使用具有256个元素的检测器。对于扩展的InGaAs阵列,将用于抑制第二衍射级的阻挡滤波器应用于该阵列。
-
单色仪类型: Flat Field Grazing Incidence 衍射光栅: 484lines/mm 光栅炽热波长: 1200nm 光谱范围: 960 - 1690 nm 光谱分辨率: 5nm
PGS系列光谱仪设计用于近红外(NIR)。InGaAs(砷化铟镓)用作该波长范围内的检测器材料。非球面准直器和聚焦透镜的特殊组合允许使用为NIR优化的平面光栅,同时保持光谱成像的良好平场校正。所有光学元件的永久连接确保了出色的长期稳定性。中心体在PGS系列中,中心体采用特殊铝合金(膨胀系数a~13 X 10-6)。该外壳是闪耀光栅、非球面准直器和聚焦透镜的载体。输入光纤和检测器永久连接到中心体,因此提供了极好的稳定性。光栅用于PGS系列的光栅是机械刻划的或全息记录的平面光栅。较大效率适用于NIR中的特定波长范围。具有透镜的清晰直径的光栅表面的尺寸使得NA高达0.37的光纤的光可以看到。输入光纤光的耦合通过玻璃单光纤以标准方式进行。这些光纤的直径为600µm,NA=0.22。光纤末端具有高度为500µm(NIR 1.7)或250µm(NIR 2.2)的狭缝。入口处的狭缝高度与InGaAs阵列的像素高度相适应。不需要类似于硅探测器的截面转换。探测器对于PGS,NIR 1.7标准InGaAs用于高达1700nm的波长范围。可提供具有256或512个元件的探测器。要达到2.2µm的波长范围,必须使用扩展InGaAs。在PGS NIR 2.0和PGS NIR 2.2中,使用具有256个元素的检测器。对于扩展的InGaAs阵列,将用于抑制第二衍射级的阻挡滤波器应用于该阵列。
-
单色仪类型: Flat Field Grazing Incidence 衍射光栅: 484lines/mm 光栅炽热波长: 1400nm 光谱范围: 1340 - 2000 nm 光谱分辨率: 8nm
PGS系列光谱仪设计用于NIR。InGaAs(砷化铟镓)用作该波长范围内的检测器材料。非球面准直器和聚焦透镜的特殊组合允许使用为NIR优化的平面光栅,同时保持光谱成像的良好平场校正。所有光学元件的永久连接确保了出色的长期稳定性。中心体在PGS系列中,中心体采用特殊铝合金(膨胀系数a~13 X 10-6)。该外壳是闪耀光栅、非球面准直器和聚焦透镜的载体。输入光纤和检测器永久连接到中心体,因此提供了极好的稳定性。光栅用于PGS系列的光栅是机械刻划的或全息记录的平面光栅。较大效率适用于NIR中的特定波长范围。具有透镜的清晰直径的光栅表面的尺寸使得NA高达0.37的光纤的光可以看到。输入光纤光的耦合通过玻璃单光纤以标准方式进行。这些光纤的直径为600µm,NA=0.22。光纤末端具有高度为500µm(NIR 1.7)或250µm(NIR 2.2)的狭缝。入口处的狭缝高度与InGaAs阵列的像素高度相适应。不需要类似于硅探测器的截面转换。探测器对于PGS,NIR 1.7标准InGaAs用于高达1700nm的波长范围。可提供具有256或512个元件的探测器。要达到2.2µm的波长范围,必须使用扩展InGaAs。在PGS NIR 2.0和PGS NIR 2.2中,使用具有256个元素的检测器。对于扩展的InGaAs阵列,将用于抑制第二衍射级的阻挡滤波器应用于该阵列。
-
单色仪类型: Flat Field Grazing Incidence 衍射光栅: 300lines/mm 光栅炽热波长: 1400nm 光谱范围: 1000 - 2150 nm 光谱分辨率: 16nm
PGS系列光谱仪设计用于NIR。InGaAs(砷化铟镓)用作该波长范围内的检测器材料。非球面准直器和聚焦透镜的特殊组合允许使用为NIR优化的平面光栅,同时保持光谱成像的良好平场校正。所有光学元件的永久连接确保了出色的长期稳定性。中心体在PGS系列中,中心体使用了一种特殊的铝合金(膨胀系数a~13 X 10-6)。该外壳是闪耀光栅、非球面准直器和聚焦透镜的载体。输入光纤和检测器永久连接到中心体,因此提供了极好的稳定性。光栅用于PGS系列的光栅是机械刻划的或全息记录的平面光栅。较大效率适合于NIR中的特定波长范围。具有透镜的清晰直径的光栅表面的尺寸使得NA高达0.37的光纤的光可以看到。输入光纤光的耦合通过玻璃单光纤以标准方式进行。这些光纤的直径为600µm,NA=0.22。光纤末端具有高度为500µm(NIR 1.7)或250µm(NIR 2.2)的狭缝。入口处的狭缝高度与InGaAs阵列的像素高度相适应。不需要类似于硅探测器的截面转换。探测器对于PGS,NIR 1.7标准InGaAs用于高达1700nm的波长范围。可提供具有256或512个元件的探测器。要达到2.2µm的波长范围,必须使用扩展InGaAs。在PGS NIR 2.0和PGS NIR 2.2中,使用具有256个元素的检测器。对于扩展的InGaAs阵列,将用于抑制第二衍射级的阻挡滤波器应用于该阵列。
-
干涉仪配置: Twyman–Green Interferometer 光源: 632 nm or 633nm, 355nm, 532nm, 1053nm, 1064nm, 1550nm, 10.6um 输出极化: Circular 有效值重复性: <0.001 waves 有效值精度: <0.002 waves
与传统的Fizeau仪器相比,Twyman-Green配置干涉仪具有几个重要的优势:振动不敏感测量可在具有挑战性的环境中使用,如Cryo-Vac测试或长测量路径。设计可以非常紧凑,可在狭小空间或难以接近的位置使用。轴上设计可提供出色的精度,尤其是在测量球形元件时。测试和参考之间的功率比以无损方式调整。PhaseCam动态Twyman-Green激光干涉仪可提供高分辨率测量,即使振动和空气湍流Dynamic Interferometry®使PhaseCams能够在30微秒内捕获完整的波前测量结果,比传统的相移干涉仪快5000倍。PhaseCams结构紧凑,重量轻,使重新配置测试设置变得简单和容易,无需振动隔离。PhaseCam激光干涉仪非常适合大直径光学元件的计量、生产车间质量控制、通常受气流湍流阻碍的洁净室应用、远程操作必不可少的环境室以及移动部件(如可变形反射镜、旋转磁盘或振动膜)的模态分析。
-
传感器类型: CMOS # 像素(宽度): 1312 # 像素(高度): 1082 像素大小: 8um 峰值量子效率: 50%
板级相机系列BL1-D1312(IE)-CL源自MV1-D1312(IE)-CL相机系列,并且在功能集中100%兼容。不同之处在于相机外壳的机械结构。相机系列BL1-D1312(IE)-CL基于PhotonFocus A1312和A1312IE CMOS图像传感器。这些PhotonFocus CMOS传感器具有90 ke的全阱容量(FWC),针对高动态范围应用和高信噪比(SNR)进行了优化。摄像机具有CameraLink基本接口。这些相机专注于工业图像处理中要求苛刻的应用。由于采用了LINLOG®技术,它们提供了非常宽的动态范围,并将高帧率与高分辨率相结合。由于采用了全局快门,即使是曝光时间在微秒范围内的高速应用也是可能的。
-
光子多普勒测速仪:用于更可靠的高速现象测量Idil Fibers Optiques开发了先进个用于冲击和Detonic应用的工业光子多普勒测速仪。这项技术允许测量先进的或多种速度,在0到20公里/秒的范围内,具有极好的时间分辨率。基于傅里叶变换算法的专用软件可实现速度场的快速可视化。紧凑的模块化系统高度为5U,允许用户构建1至4个测量通道的PDV系统。这个新系统集成了一些改进,例如:低速测量选项与固定的移动频率,红色校准激光直接集成在每个输出,所有参数可在触摸屏上调整…紧凑型光子多普勒测速仪:多达4个测量通道https://www.idil-fibres-optiques.com/product/pdv/光子多普勒测速仪:多达32个测量通道https://www.idil-fibres-optiques.com/product/photonic-doppler-velocimeter-1-to-32-channels/
-
模式锁定电源: 6000mW 脉冲持续时间: 7000fs 重复频率: 75 - 75 MHz 脉冲能量: 80nJ 中心波长: 1064 - 1064 nm
Solar LS推出了一系列新的高功率DPSS激光器,可产生持续时间为7 PS的激光脉冲——PX100系列。这些激光器的高峰值和平均功率以及出色的长期辐射稳定性使其成为从生命科学到材料加工等各种应用的理想工具。PX100系列激光器具有纵向端面泵浦的原始光学方案,并使用先进的SESAM®技术来获得锁模状态。这些解决方案确保了卓越的TEM00光束质量和前所未有的短预热时间。PX100系列的激光器可轻松集成到任何专业设备或复杂的测量系统中,因为它具有紧凑的占地面积、空气冷却、内置功率计模块和用于PC控制的全RS232/以太网接口。这些激光器是专门为坚固耐用、低维护操作而开发的。PX100系列激光器的谐振腔和非线性晶体被放置在密封的刚性外壳中,从而确保可靠的24/7运行。在标准配置中,PX110激光器提供红外输出。然而,根据您的要求,它可以补充谐波发生器,提供高效率的辐射转换到VIS和UV区域,从而扩展激光器的能力,以解决非线性光学和激光光谱学领域的任务。
-
模式锁定电源: 3000mW 脉冲持续时间: 7000fs 重复频率: 75 - 75 MHz 脉冲能量: 40nJ 中心波长: 532 - 532 nm
Solar LS推出了一系列新的高功率DPSS激光器,可产生持续时间为7 PS的激光脉冲——PX100系列。这些激光器的高峰值和平均功率以及出色的长期辐射稳定性使其成为从生命科学到材料加工等各种应用的理想工具。PX100系列激光器具有纵向端面泵浦的原始光学方案,并使用先进的SESAM®技术来获得锁模状态。这些解决方案确保了卓越的TEM00光束质量和前所未有的短预热时间。PX100系列的激光器可轻松集成到任何专业设备或复杂的测量系统中,因为它具有紧凑的占地面积、空气冷却、内置功率计模块和用于PC控制的全RS232/以太网接口。这些激光器是专门为坚固耐用、低维护操作而开发的。PX100系列激光器的谐振腔和非线性晶体被放置在密封的刚性外壳中,从而确保可靠的24/7运行。在标准配置中,PX110激光器提供红外输出。然而,根据您的要求,它可以补充谐波发生器,提供高效率的辐射转换到VIS和UV区域,从而扩展激光器的能力,以解决非线性光学和激光光谱学领域的任务。
-
重复频率: 75MHz 总调谐范围: 690 - 990 nm 核心调谐范围: 1150 - 2200 nm 输出功率: 400W 脉冲持续时间: 6000fs
PXT100是先进的可调谐激光辐射源,由Solar LS提供超短脉冲持续时间。PXT100激光系统在一个紧凑的外壳中结合了皮秒DPSS泵浦激光器和同步泵浦的宽范围可调谐光学参量振荡器,是专门为处理多色激发实验的科学家开发的,例如SRS(受激拉曼散射)或CARS(相干反斯托克斯拉曼散射)。皮秒DPSS泵浦激光器提供高峰值功率激光脉冲和高达75MHz的脉冲重复率。具有优化系统的OPO光学方案用于使输出线宽变窄,确保具有高光谱亮度和高对比度的可调谐辐射。同时,PXT100系统提供了前所未有的宽调谐范围。用于同时输出不同光谱范围的激光辐射的多个端口以及用于剩余532nm泵浦光束的单独输出扩展了您的实验机会,并使您的工作更加舒适。PXT100激光系统具有许多独特的设计特点,可显著提高激光寿命和正常运行时间:PXT100的集成防尘设计可保证出色的长期输出功率稳定性,并且几乎不需要维护;高精度步进电机模块和电子设备确保所有移动部件的正确定位;通过用户友好的软件来确保波长调谐的波长选择和控制。所有这些都使PXT100成为一种非常方便和易于使用的仪器,而不需要您成为激光专家来操作它。因此,你可以专注于你的实验,不用担心你使用的是高科技设备。