-
分散: 8nm/mm 波长范围: 200 - 400 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 600l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 16nm/mm 波长范围: 400 - 800 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 300l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 24nm/mm 波长范围: 200 - 800 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 200l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 36nm/mm 波长范围: 300 - 1170 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 138l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 40nm/mm 波长范围: 200 - 1200 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 120l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 48nm/mm 波长范围: 200 - 1400 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 100l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 4nm/mm 波长范围: 300 - 400 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 1200l/mm
IV型像差校正平场和成像光栅被设计为将光谱聚焦到平面表面上,使其非常适合与线性或2-射线探测器一起使用。这些光栅由既不等间距也不平行的凹槽制成,并经过计算机优化,以在探测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像。与传统的I型罗兰圆凹面光栅相比,该光栅提供了更好的光收集效率和信噪比。当使用诸如CCD的面探测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 67.4nm/mm 波长范围: 1600 - 2200 nm 频谱长度: 8.9mm F/Number: 2 沟槽密度: 130l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 15.6nm/mm 波长范围: 800 - 1000 nm 频谱长度: 12.8mm F/Number: 2.2 沟槽密度: 595l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 1.1nm/mm 波长范围: 440 - 520 nm 频谱长度: 70mm F/Number: 6.7 沟槽密度: 2000l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 1.0nm/mm 波长范围: 250 - 450 nm 频谱长度: 203mm F/Number: 5.1 沟槽密度: 1800l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 1.4nm/mm 波长范围: 100 - 400 nm 频谱长度: 210.4mm F/Number: 7.9 沟槽密度: 1340l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 29nm/mm 波长范围: 320 - 710 nm 频谱长度: 13.4mm F/Number: 2 沟槽密度: 310l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 27nm/mm 波长范围: 400 - 950 nm 频谱长度: 20mm F/Number: 1.8 沟槽密度: 217l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 8.1nm/mm 波长范围: 330 - 660 nm 频谱长度: 40.4mm F/Number: 2 沟槽密度: 540l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 67nm/mm 波长范围: 380 - 720 nm 频谱长度: 5mm F/Number: 1.5 沟槽密度: 320l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 4.6nm/mm 波长范围: 395 - 705 nm 频谱长度: 68mm F/Number: 2.4 沟槽密度: 793l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 67nm/mm 波长范围: 380 - 820 nm 频谱长度: 6.6mm F/Number: 1.8 沟槽密度: 143l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 53nm/mm 波长范围: 190 - 870 nm 频谱长度: 12.6mm F/Number: 2 沟槽密度: 185l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。