-
涂层: Multi-layer 入射角: Not Specified 波长范围: 1000 - 1120 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 240 - 360 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 500 - 1150 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 450 - 700 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 8000 - 12000 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 355 - 1200 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
测量类型: Elemental analysis
Rigaku NEX CG可对各种类型的样品中的主要和次要原子元素进行快速定性和定量测定-较低标准:非破坏性分析NA至non-U固体、液体、粉末和薄膜检测下限的极化激发峰重叠的新颖处理减少了误差使用Ultracarry的含水样品的ppb检测极限带EZ分析的简化用户界面用于迹级灵敏度的极化笛卡尔几何学与传统的EDXRF分析仪不同,NEX CG采用了独特的紧密耦合笛卡尔几何(CG)光学内核,大大提高了信噪比。通过使用二次目标激励代替传统的直接激励,进一步提高了灵敏度。由此产生的背景噪声的显著降低和元素峰值的同时增加,使得光谱仪即使在困难的样品类型中也能够进行常规痕量元素分析。新颖的软件减少了对标准的需求NEX CG由新的定性和定量分析软件RPF-SQX提供支持,该软件采用了Rigaku Profile Fitting(RPF)技术。该软件允许在没有标准品的情况下对几乎所有样品类型进行半定量分析,并使用标准品进行严格的定量分析。
-
中心波长: 0.450um 输出功率: 6000mW
日亚NUBM44 450nm 6W 9mm全新NUBM44是一款发射6W功率的445nm激光二极管。它是目前所有9mm TO-CAN(TO-5封装)激光二极管的较高功率。尽管NUBM44的典型中心波长为445nm,但在某些文献中,它有时被称为450nm激光二极管。尽管这是一个多模激光二极管,但它具有极窄的波导,这使得它几乎具有任何高功率半导体激光器的较低光学扩展量(给定光束直径的远场发散度)。与其他高功率激光二极管相比,窄发射极宽度使其能够更好地准直和聚焦。-6.0W蓝色激光二极管,波长445nm-高度可聚焦且能够很好地准直-紧凑型TO-5(9mm)TO-CAN封装-0C至65C的宽工作温度范围-氮化镓蓝色激光技术可延长高温下的使用寿命设计波长:445 nm工作电流典型值[A]:3 A工作温度范围:0至+60°C工作电压:3.7-5.2 V封装:TO-5阈值电流:150-350 mA存储温度范围:-40至85°C20°C时的光功率[W]:6 W估计寿命:10000小时与其它高功率半导体激光器相比,这种蓝色激光二极管相对不受工作温度的影响,并且具有0℃至65℃的外壳工作温度范围。NUBM44在25℃下的典型寿命为20,000小时。然而,如果蓝色激光器的外壳温度被加热到65℃,则寿命仅降低很小的系数。由于较近开发的氮化镓激光技术,这是先进可能的。目前用于红光和近红外激光二极管的砷化镓激光技术不能在高温下实现低的长期退化水平。因此,这种蓝色激光二极管是各种环境和应用的可靠选择。此外,该GaN激光器具有特殊的TO-5(9mm)封装,这使其具有比该功率水平下的激光二极管通常可能的热阻更低的热阻。9毫米的TO-CAN也是密封的,可以保护半导体激光器芯片免受灰尘和其他污染。相比之下,高功率红光和NIR激光二极管通常需要C-Mount封装,其具有暴露的刻面,如果不在洁净室环境中操作,则会出现可靠性问题。
-
中心波长: 1000nm 带宽: 75nm 峰值透射率: 95%
NIR带通滤波器SP用于各种光学传感器应用中。它们一方面阻挡可见环境光,另一方面阻挡长波红外光。只有来自近红外(NIR)范围的所选信号或测量光可以被传输。因此,NIR带通滤波器SP是实现出色的信噪比的关键组件,这与光学测量、距离测量应用或用于手势识别(TOF,飞行时间)的特定系统相关。这些特性有助于在较低的信号光强度下进行精确的距离测量,或者在正常的信号光强度下进行灵敏度增加和精度更高的测量。根据特定的应用和所使用的光源,NIR带通滤波器可以与客户合作以成本有效的方式进行定制。此外,为了进一步抑制干扰杂散光或促进预定义结构的测量,这些滤光片可以配备图案化的黑色镀铬层。
-
分类:光谱仪波长范围: 900 - 2200 nm 决议: 5nm 最短扫描时间: .001sec
总统的选择!这台NIRQUEST512-2.2近红外光谱仪是我们较喜欢的NIRQUEST装置,大范围,高灵敏度,较佳价值。可租可买!按周或按月租用NirQuest512-2.2,在购买之前验证您的应用程序和系统性能!租赁费用的50%可用于购买新设备(较高为销售价格的50%)。小尺寸光纤USB光谱仪采用冷却增强型InGaAs 512元素探测器阵列,用于900–2200nm波长范围内的光谱测量。25微米狭缝产生5nm量级FWHM的光学分辨率,包括SpectraSuite软件和电源。强大–深热电冷却低至-20°C,实现低暗电流快速–非常适合使用化学计量模型的应用模块化–可配置一系列光源、光纤和配件,以满足您的特定应用
-
波长: 1064nm 平均值功率: 0.016W 重复频率: 0.01 - 0.01 kHz 脉宽: 2ns 脉冲间稳定性: 1%
NL120系列电光调Q纳秒Nd:YAG激光器每脉冲输出高达10 J,具有出色的稳定性。创新的二极管泵浦自籽晶主振荡器设计实现了单纵模(SLM)输出,无需使用外部昂贵的窄线宽籽晶二极管和腔锁定电子器件。与使用不稳定激光腔的更常见的设计不同,稳定的主振荡器腔产生TEM空间模式输出,其在放大级之后产生极好的光束特性。NL120系列调Q纳秒激光器是许多应用的绝佳选择,包括OPO、OPCPA或染料激光泵浦、全息摄影、LIF光谱、遥感、光学测试和其他任务。对于需要平滑且尽可能接近高斯光束轮廓的任务,可以使用具有改进的高斯拟合的模型。光脉冲相对于Q开关触发脉冲的低抖动允许激光器和外部设备之间的可靠同步。可选的二次(SH)(用于532nm)、三次(TH)(用于355nm)和四次(FH)(用于266nm)谐波发生器提供对较短波长的访问。激光器由提供的上网本PC通过USB端口控制,并带有适用于Windows™操作系统的应用程序。此外,还可以通过辅助遥控板控制激光器的主要设置。遥控板采用背光显示屏,即使佩戴激光安全眼镜也易于阅读。