-
测量范围: 0 - 12 mm 测量分辨率: 0.02%
基于光纤布拉格光栅(FBG)技术,OS5000专门设计用于测量试样表面上两个测量点之间的位移。测量仪的设计非常灵活,可以方便地连接到各种基底上,直接在金属、混凝土和其他表面上进行测量。构成OS5000测量仪的FBG传感器位于坚固的硬质涂层阳极氧化铝外壳内,该外壳可保护传感器免受恶劣环境的影响,并允许在恶劣环境中安装。该测量仪可单独使用,也可作为FBG传感器阵列(可包括应变和温度测量仪、加速度计和其他位移测量仪)的一部分串联使用。与类似的电子仪表网络相比,这种阵列的布线成本低得多,也不那么麻烦。电缆可以直接在外壳内连接,无需单独的接线盒。OS5000提供了所有基于FBG的传感器所固有的许多优势,包括EMI抗扰度——这是振弦式测量仪无法提供的。对于每个测量仪,Micron Optics都提供了传感器信息表,列出了将波长信息转换为工程单位所需的测量仪系数和校准系数。Micron Optics的EnLight传感软件为大型传感器网络提供了计算、记录、显示和传输数据的工具。
-
测量范围: 0 - 50 mm
基于光纤布拉格光栅(FBG)技术,OS5100专门设计用于测量试样表面上两个测量点之间的位移。测量仪的设计非常灵活,可以方便地连接到各种基底上,直接在金属、混凝土和其他表面上进行测量。构成OS5100测量仪的两个FBG传感器位于坚固的硬质涂层阳极氧化铝外壳内,该外壳可保护传感器免受恶劣环境的影响,并允许在恶劣环境中安装。该测量仪可以单独使用,也可以作为FBG传感器阵列(可包括应变和温度测量仪、加速度计和其他位移测量仪)的一部分串联使用。与类似的电子仪表网络相比,这种阵列的布线成本低得多,也不那么麻烦。电缆可以直接在外壳内连接,无需单独的接线盒。OS5100提供了所有基于FBG的传感器所固有的许多优势,包括EMI抗扰度——这是振弦式测量仪无法提供的。对于每个测量仪,Micron Optics都提供了一份传感器信息表,列出了将波长信息转换为工程单位所需的测量仪系数和校准系数。Micron Optics的EnLight传感软件为大型传感器网络提供了计算、记录、显示和传输数据的工具。
-
测量范围: 0 - 450 mm 测量分辨率: 0.02%
基于光纤布拉格光栅(FBG)技术,OS5500专门设计用于测量试样表面上两个测量点之间的位移。测量仪的设计非常灵活,可以方便地连接到各种基底上,直接在金属、混凝土和其他表面上进行测量。由OS5500测量仪组成的FBG传感器位于坚固的硬质涂层阳极氧化铝外壳内,该外壳可保护传感器免受恶劣环境的影响,并允许在恶劣环境中安装。该测量仪可以单独使用,也可以作为FBG传感器阵列(可包括应变和温度测量仪、加速度计和其他位移测量仪)的一部分串联使用。与类似的电子仪表网络相比,这种阵列的布线成本低得多,也不那么麻烦。电缆可以直接在外壳内连接,无需单独的接线盒。OS5500提供了所有基于FBG的传感器所固有的许多优势,包括EMI抗扰度——这是振弦式测量仪无法提供的。对于每个测量仪,Micron Optics都提供了一份传感器信息表,列出了将波长信息转换为工程单位所需的测量仪系数和校准系数。Micron Optics的EnLight传感软件为大型传感器网络提供了计算、记录、显示和传输数据的工具。
-
裸光纤适配器提供了一种简单而有效的方法,可将未端接的光纤与商用插座配合使用。只需剥离、清洁和切割光纤,然后插入裸光纤适配器即可。建议将其用于电表连接、临时系统维修或任何需要快速光纤连接的地方。OZ Optics较近改进了裸光纤适配器的设计,现在使用磁性夹紧机构。新的设计温和而牢固地将光纤固定在适当的位置,而不会损害柔软的丙烯酸酯涂层,并且更易于操作员使用。磁夹不会对光纤施加任何应力,这使其非常适合PM光纤相关测量,包括消光比(ER)、偏振相关损耗(PDL)和偏振模色散(PMD)。带有弹簧夹的裸光纤适配器可容纳高达900微米外径的护套光纤。带磁夹的裸光纤适配器包括外径为250微米至400微米的带护套光纤。900微米外径紧密缓冲器和定制护套尺寸可供选择。
-
分类:晶体水晶类型: LiNbO3 (Lithium Niobate) 宽度: 9mm 高度: 9mm 长度: 5mm 平整度: <= Lambda/8
周期性极化铌酸锂(PPLN)是一种高效的非线性波长转换晶体,具有很宽的光透射范围,覆盖了近红外和中红外光谱区域,可用于倍频(SHG)、信号光(SFG)、光学参量振荡(OPO)以及从可见光到中红外的其他非线性过程。以满足现代光学对激光波长多样性的要求。通过周期结构的设计,可以实现透过率范围内任意波长的输出。PPLN晶体在激光显示、环境探测、中红外光谱、全光波长转换、光学传感等领域有着广泛的应用。在保持较高的非线性系数的同时,通过MgO掺杂可以大幅度提高晶体的光损伤阈值和光折变阈值。与相同组分的PPLN相比,MgO:PPLN晶体可以在更低的温度和可见光范围内稳定工作。