-
材料: BK7, MgF2, BaF2, H-K9L, Ge, Si, ZnSe, CaF2, UVFS, FS, H-ZF13 直径: 0.5-5mm 焦距: 0.05-5mm 边缘厚度,Te: 0.3-2mm 镜头类型: Plano-Convex, Plano-Concave, Bi-Convex, Bi-Concave
微型镜头(超小型镜头)在高折射率条件下,某些元件可以实现短焦距。因此,微透镜成为高精度应用领域的理想选择。由于这类镜头的超小尺寸(外径0.5mm-5mm,长度:1mm-20mm),微型镜头或超小镜头往往需要特殊的加工工艺、独特的生产诀窍和专用的光学夹具等。PhotonChina为一系列应用提供各种尺寸的微透镜,包括光纤通信中的有源器件、波分复用器(WDM)和光纤激光器(见C-Lens、G-Lens)、医疗和工业用内窥镜、胶囊内窥镜等。其新的应用领域还在不断拓展。各种光学玻璃或其他材料,如N-SF11、H-LAF76、熔融石英等可供客户设计。例如,H-LAF53经常用于内窥镜透镜或胶囊透镜的生产。微透镜的外径覆盖0.5mm至5.0mm,具有可制造的任何曲率半径。我们有各种各样的透镜形状:凸面,凹面,双凸面,弯月面等。
-
传感器类型: CMOS # 像素(宽度): 1600 # 像素(高度): 1100 像素大小: 9um 全帧速率: 4000000fps
科丁560型高速转镜分幅相机以极高的分幅速率和适中的成本提供高分辨率。Cordin 560以每秒400万帧的帧速率和1.8百万像素的分辨率在突发模式下捕获图像。该系统使用旋转镜光学系统,其不需要读出图像的子阵列以实现更高的成帧速率。相对于基于MCP的高速相机系统,它还允许更高的帧数,并且没有图像退化,并且能够实现彩色成像。该相机系统的ADC动态范围为12位,并且在所有速度范围内以1600 X 1100的全帧尺寸捕获图像。该相机有20、40或78帧配置可供选择。框架可以是黑白或彩色的。购买的框架较少的系统可以在以后升级到更多的框架。560型照相机可以由被拍摄的事件触发,并且可以在感兴趣的事件之前或之后的一段时间内接受触发。它还可以提供用于启动事件的触发器。标准高速镜驱动装置在低速至中速时由压缩空气或氮气驱动,在高速时由氦气驱动。相机还可以配置一个以较低速度运行的无刷电动反射镜,以便在不需要高取景速率时进行更方便的操作。该系统配有一台计算机和控制软件。后处理图像对齐软件,为动画和分析提供精确的图像对齐也包括在内。数据可以以多种8位文件格式保存。完整的12位图像以16位TIFF文件格式保存。
-
传感器类型: CMOS # 像素(宽度): 3200 # 像素(高度): 2200 像素大小: 4.5um 全帧速率: 4000000fps
Cordin 580型高速转镜分幅相机实现了所有可用成像技术中较高的速度、分辨率和帧数组合。该系统使用旋转镜光学系统,其不需要读出图像的子阵列以实现更高的成帧速率。为2020年重新设计的580型采用了较新的CMOS传感器器件,并采用了新的前端光学系统,该系统具有更大的光圈,从而全面提高了光敏度、动态范围并减少了渐晕。该相机系统的ADC动态范围为12位,并且在所有速度范围内以3.2K X 2.2K的全帧大小捕获图像。该相机有20、40、78或80帧配置。购买的框架较少的系统可以在以后升级到更多的框架。580型照相机可以由被拍摄的事件触发,并且可以在感兴趣的事件之前或之后的一段时间内接受触发。它还可以提供用于启动事件的触发器。标准高速镜驱动装置在低速至中速时由压缩空气或氮气驱动,在高速时由氦气驱动。相机还可以配置以较低速度运行的无刷电动反射镜,以便在不需要高取景速率时更方便地操作。该系统配有完整的主机和相机控制软件。后处理图像对齐软件,为动画和分析提供精确的图像对齐也包括在内。数据可以以多种8位文件格式保存。完整的12位图像以16位TIFF文件格式保存。
-
水晶类型: Nd:YAG 水晶直径: 3~12.7mm 水晶长度: 3~150mm AR 涂层: One side, Both sides, Uncoated
Nd:YAG晶体是在YAG晶体中掺入Nd离子得到的成熟激光晶体之一。Nd:YAG激光晶体的吸收带宽分别为730-760nm和790-820nm。通常用闪光灯或半导体激光器泵浦。典型的激光发射峰为1064nm。通过一些措施,还可以发射946nm、1120nm、1320nm和1440nm激光。不同波长的激光(532nm、266nm、213nm等)通过调Q和锁模可以获得10-25ns的脉冲宽度。它在生物物理、医学、军事、机械、科研、建筑等领域有着广泛的应用。高浓度掺杂晶体用于脉冲激光,低浓度掺杂晶体用于连续波输出。联系我们获取更多信息!@crylink
-
水晶类型: Nd:YAG 水晶直径: 8mm 水晶长度: 165mm AR 涂层: One side
Nd:YAG晶体是在YAG晶体中掺入Nd离子而得到的成熟激光晶体。Nd:YAG激光晶体的吸收带宽为730-760nm和790-820nm,通常由闪光管或激光二极管泵浦。典型的激光发射峰为1064nm,通过一些措施也可以发射946nm、1120nm、1320nm和1440nm波长的激光,采用调Q和锁定模式可以获得不同波长(532nm、266nm、213nm等)的激光。和脉冲宽度(10-25ns),使其在生物物理、医学、军事、机械、科研、建筑等领域得到了广泛的应用。通常,高浓度掺杂的晶体用于脉冲激光,低浓度掺杂的晶体用于连续激光输出。
-
设备类型: FROG 可测量的脉冲宽度: 4 - 500 fs 波长范围: 700 - 1100 nm 输入极化: Any
作为AFROG设备,Grenouille产生脉冲强度和相位。时间和频谱以及频谱具有很高的准确性和可靠性,不需要对脉冲进行任何假设。它测量的是实际脉冲,而不是相干性。此外,Grenouillealsome测量了光束的空间分布。更重要的是,它还同时产生了其他难以测量的时空失真,即空间啁啾和脉冲前倾斜,这在大多数超短脉冲中都会发生,但实际上大多数都从未测量过。Grenouille是先进一种商业上可用的设备,可以测量这些失真和较准确的脉冲前倾斜诊断。它也产生了近似的脉冲绝对波长。值得注意的是,GrenouilleneedsnoAlignment——永远!即使把它放在梁上也是非常容易的。Grenouilletellsyoumoreaboutyourpulse用比想象中更少的努力!重量只有1公斤,轻便小巧,AFootPrint比AFoot更小!
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 1000 - 1120 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 240 - 360 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 500 - 1150 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 450 - 700 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 8000 - 12000 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 355 - 1200 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
测量类型: Chemical identification
Rigaku NEX LS采用先进的第三代能量色散X射线荧光(EDXRF)技术,代表了用于卷材或线圈应用的扫描多元素工艺涂层分析仪的下一次进化。能量色散X射线荧光(EDXRF)为了提供卓越的分析性能和可靠性,EDXRF测量头组件源自已建立的Rigaku NEX系列高分辨率台式仪器。凭借其成熟的技术,Rigaku NEX LS可对涂层重量、涂层厚度和/或成分进行快速、无损的多元素分析,适用于从铝(Al)到铀(thickness U)的元素。涂层厚度和成分Rigaku NEX LS专为卷筒纸和卷材应用而设计,能够执行多元素组合、涂层重量或涂层厚度。测量头安装在刚性梁上,并配备有位于滚轮上方的线性横动机构,以使头-面距离恒定。需要时,可直接测量涂层的元素组成。相反,涂层重量(或涂层厚度)可以直接测量(其中元素的计数率与厚度成比例)或通过测量一些基材元素的衰减来间接测量(其中计数率与厚度负相关)。长期以来,台式EDXRF光谱仪一直是脱模涂层、转换器、真空成型塑料制造商和其他使用硅油作为阻挡层、脱模涂层或脱模剂的行业所熟悉的技术。实时扫描,用于更严格的过程控制公差,将用于硅涂层分析的EDXRF技术提升到一个新的水平。硅酮涂层应用于塑料和纸质基材,以改变产品(如标签)或包装的释放特性。如果施加的硅酮太少,或者如果存在硅酮涂层缺失的幅材区域,则在剥离应用中粘合剂剥离性能将受到不利影响,或者真空成形塑料的脱嵌特性将受到损害,从而导致产品报废或在制造和其它下游工艺中中断。如果应用了太多的硅酮,则制造的辊的成本增加,降低了盈利能力,并且在某些情况下影响了较终产品的接受和性能。
-
中心波长: 0.450um 输出功率: 6000mW
日亚NUBM44 450nm 6W 9mm全新NUBM44是一款发射6W功率的445nm激光二极管。它是目前所有9mm TO-CAN(TO-5封装)激光二极管的较高功率。尽管NUBM44的典型中心波长为445nm,但在某些文献中,它有时被称为450nm激光二极管。尽管这是一个多模激光二极管,但它具有极窄的波导,这使得它几乎具有任何高功率半导体激光器的较低光学扩展量(给定光束直径的远场发散度)。与其他高功率激光二极管相比,窄发射极宽度使其能够更好地准直和聚焦。-6.0W蓝色激光二极管,波长445nm-高度可聚焦且能够很好地准直-紧凑型TO-5(9mm)TO-CAN封装-0C至65C的宽工作温度范围-氮化镓蓝色激光技术可延长高温下的使用寿命设计波长:445 nm工作电流典型值[A]:3 A工作温度范围:0至+60°C工作电压:3.7-5.2 V封装:TO-5阈值电流:150-350 mA存储温度范围:-40至85°C20°C时的光功率[W]:6 W估计寿命:10000小时与其它高功率半导体激光器相比,这种蓝色激光二极管相对不受工作温度的影响,并且具有0℃至65℃的外壳工作温度范围。NUBM44在25℃下的典型寿命为20,000小时。然而,如果蓝色激光器的外壳温度被加热到65℃,则寿命仅降低很小的系数。由于较近开发的氮化镓激光技术,这是先进可能的。目前用于红光和近红外激光二极管的砷化镓激光技术不能在高温下实现低的长期退化水平。因此,这种蓝色激光二极管是各种环境和应用的可靠选择。此外,该GaN激光器具有特殊的TO-5(9mm)封装,这使其具有比该功率水平下的激光二极管通常可能的热阻更低的热阻。9毫米的TO-CAN也是密封的,可以保护半导体激光器芯片免受灰尘和其他污染。相比之下,高功率红光和NIR激光二极管通常需要C-Mount封装,其具有暴露的刻面,如果不在洁净室环境中操作,则会出现可靠性问题。