• 零阶四分之一波板1300纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板1310纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板1550纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零级)或3V、5V、7V等(多级)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板266纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板355纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板405纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板488纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板514纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板532纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板633纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板670纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板780纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板 808纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板 830纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板850纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • ZERODUR玻璃陶瓷 光学材料
    英国
    分类:光学材料
    厂商:H V Skan Ltd
    应用范围: Deep Ultraviolet (DUV), Ultraviolet (UV), Visible (VIS), Infrared (IR), Near Infrared (NIR), Short Wavelength IR (SWIR), Long Wavelength IR (LWIR), Broadband 波长范围: 1 - 1 nm

    ZERODUR®是一种具有极低热膨胀系数的玻璃陶瓷。ZERODUR®较重要的特性是:几乎为零的热膨胀,具有出色的3D均匀性高内部质量良好的加工性能可抛光至非常高的精度可轻松涂覆低氦渗透率无孔良好的化学稳定性

  • ZnSe RMI立方体光束分流器 分束器
    美国
    分类:分束器
    材料: ZnSe 波长范围: 9000 - 11000 nm 最大光束偏差: 3arcmin

    非偏振板分束器将入射单色光束分成具有特定强度比的反射和透射分量。它们被设计用于需要保持入射光束的偏振特性的应用。该板的一面涂有全介质、非偏振、部分反射涂层,另一面涂有高效率、窄带、抗反射涂层。

  • ZnSe RMI板式分流器 分束器
    美国
    分类:分束器
    基质: Zinc Selenide 波长范围: 9000 - 11000 nm

    非偏振板分束器将入射单色光束分成具有特定强度比的反射和透射分量。它们被设计用于需要保持入射光束的偏振特性的应用。该板的一面涂有全介质、非偏振、部分反射涂层,另一面涂有高效率、窄带、抗反射涂层。

  • ZX-1 micro Array+ HD 光纤检测工具
    可接受的纤维直径: 0.5 - 1.8 um

    DORC的第六代ZX-1 Micro Array+HD主要用于测量多光纤(MT/MPO®和MT-RJ)连接器,是29年硬件和软件产品开发的成果。虽然针对多光纤连接器进行了优化,但ZX-1 Micro Array+HD在测量单光纤PC和APC连接器方面也表现出色。DORC的专利设计基于Michelson配置的变体,并在大约30秒内为多光纤连接器提供测试样品的2D和3D高分辨率图像,而对于单光纤连接器则小于1秒。创新的设计使操作员除了插入和移除连接器外无需做任何事情。对焦、定心和基准镜校准调整都是自动进行的,无需用户进行机械调整!该系统非常紧凑,由笔记本电脑(台式机或平板电脑可选)使用一根USB 3.0接口电缆控制。ZX-1 Micro Array+HD采用无风扇密封设计,对振动不敏感,不受灰尘和污染物侵入的影响,使其在生产和现场应用中同样如鱼得水。各种标准和定制卡盘可用于支持所有类型的多光纤和单光纤连接器。仅使用一个螺钉将卡盘固定到干涉仪上,更换卡盘只需几秒钟即可完成。采用DORC的新型专利陶瓷参考导针方法,不仅保证了测量精度,而且还意味着在切换到多光纤卡盘或在多光纤卡盘之间切换时,无需进行任何校准。当安装单光纤卡盘时,使用DORC的专利“Connect ID”RFID参考连接器,总共需要不到30秒,包括APEX偏移校准。

  • ZX-1 micro DUET+ 光纤检测工具
    可接受的纤维直径: 0.5 - 1.8 um

    DORC的ZX-1 Micro Duet+是世界上先进个“双头”系统,主要设计用于使用单个PC和操作员“同时”测量混合跳线的两端。例如,可以同时测量1.25毫米至2.50毫米跳线的两端,而无需更换卡盘。两端的数据连续出现在历史报告中,大大减少了通常与首先测量所有1.25mm端、更换卡盘然后测量所有2.50mm端相关的时间和数据处理。使用单个PC作为控制器降低了系统成本,同时提高了操作员的生产率和吞吐量。ZX-1 Micro Duet+可配置ZX-1 Micro PMS+系列测量仪器中的任意两个模块。典型配置可能包括:2个ZX-1微型PMS+模块,安装有不同的卡盘,用于测量混合跳线。1 X ZX-1 Micro PMS+模块和1 X ZX-1 Micro Array+模块,用于测量MT/MPO扇出组件。1 X ZX-1 Micro PMS+模块和1 X ZX-1 Micro 20-20 Vision模块,用于测量单光纤跳线几何形状和超高分辨率划痕分析。1 X ZX-1 Micro PMS+模块和1 X ZX-1 Micro Tune Up模块,用于测量单光纤跳线几何形状和极高分辨率纤芯偏心分析。重要的是要理解,因为各个系统都知道彼此的行动,ZX-1 Micro Duet+系统变得远远超过其各部分的总和。