• LAQ0202 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 3.00mm 材料: H-ZLaF52 有效焦距: 2.00mm 数值孔径: 0.50 波长范围: 400 - 700 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0203 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 4.40mm 材料: H-ZLaF50B 有效焦距: 2.59mm 数值孔径: 0.60 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0304 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 4.50mm 材料: N-BK7 有效焦距: 3.30mm 数值孔径: 0.47 波长范围: 350 - 1100 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0305 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.33mm 材料: H-ZLaF52 有效焦距: 3.10mm 数值孔径: 0.68 波长范围: 400 - 700 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0405 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.33mm 材料: Borosilicate 有效焦距: 4.02mm 数值孔径: 0.60 波长范围: 300 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0406 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.33mm 材料: S-NPH1 有效焦距: 4.51mm 数值孔径: 0.54 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0505 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.00mm 材料: H-LAK54 有效焦距: 4.60mm 数值孔径: 0.53 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定的波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0805 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.51mm 材料: H-LAK54 有效焦距: 7.50mm 数值孔径: 0.30 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ0808 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 9.94mm 材料: D-LaK6 有效焦距: 8.00mm 数值孔径: 0.50 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定的波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ1107 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 7.20mm 材料: H-LAK54 有效焦距: 9.64mm 数值孔径: 0.30 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定的波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ1505 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.50mm 材料: H-LAK54 有效焦距: 15.29mm 数值孔径: 0.16 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • LAQ1805 - 精密级非球面镜片AR镀膜 光学透镜
    英国
    分类:光学透镜
    直径: 6.50mm 材料: H-LAK54 有效焦距: 18.40mm 数值孔径: 0.15 波长范围: 350 - 2000 nm

    传统上,透镜表面是球面的一部分。对于许多应用,这使得球面像差成为如此产生的任何图像的主要缺陷,使用非球面透镜来校正这些图像缺陷,对此的一种解决方案是具有一个或两个表面,偏离球面形状。非球面透镜可以非常有效地聚焦或准直激光束。非球面透镜被抛光到良好的表面光洁度,但表面不是球形的,并且被成形以减少来自单个轴上点的像差。这些精密级非球面透镜将在可见光谱和近红外应用中提供出色的性能。玻璃非球面透镜在高折射率火石玻璃上涂有单层AR涂层,在规定的波长下实现98%的高透射率(典型的V涂层设计为550nm)。

  • maxLIGHT - VUV / XUV / X射线光谱仪 光谱仪
    德国
    分类:光谱仪
    厂商:HP Spectroscopy
    单色仪类型: Flat Field Grazing Incidence 有效焦距: 400-infinitymm 光谱范围: 1 - 200 nm 线性色散: 0.3 - 1.3nm/mm 光谱分辨率: 0.035 - 0.11nm

    OurMaxLightXUV光谱仪具有从1nm到80nm的像差校正平场波长覆盖范围。使用单个光栅覆盖了5到80nm的范围,此外,在10到80nm之间,光谱仪可以在没有入口狭缝的情况下使用,以较大化光源距离范围内的光收集。其模块化设计能够匹配不同的实验几何形状和配置。它具有一个集成的狭缝支架和过滤器插入单元,以及一个电动光栅定位。

  • MgF2涂层消色差透镜 光学透镜
    美国
    分类:光学透镜
    安装: Unmounted 最佳波长范围: 400 - 700 nm 直径: 1.00mm 焦距: 1.50mm 消色差型: Doublet

    消色差双合透镜由两个粘合在一起的光学元件组成,以形成消色差双合透镜,该透镜经过计算机优化,以校正轴上的球面像差和色差。我们的消色差双合透镜具有单层MgF2涂层或用于可见光谱的宽带多层涂层。还可以使用NIR消色差双线和边缘变黑消色差双线。对于多色(“白光”)成像,消色差双合透镜远优于简单透镜。组成消色差双合透镜(字面意思是“没有颜色的透镜”)的两个元件配对在一起,因为它们能够校正玻璃中固有的颜色分离。在消除了有问题的色差之后,消色差双合透镜成为用于良好的多色照明和成像的较具成本效益的手段。

  • Microlux IV复式显微镜 普通显微镜
    美国
    分类:普通显微镜
    厂商:Spectra Services
    支持的目标: 100x, 40x, 20x, 10x, 4x 照明: Coaxial 焦点控制: Coarse, Fine XY 机械平台: Not Included 目镜: >10x

    Microlux IV是我们较通用的复合显微镜,具有可选的视频或数字配置以及相位对比、LED、简单偏振和用于皮肤科手术的MOH。Microlux配备了五个无限校正计划目标:4倍,10倍,20倍,40倍,100倍更清晰的图像和几乎没有像差。几种目标配置也可用于不同的放大需求。

  • 单色仪光栅 522 00 130 衍射光学元件
    美国
    光谱范围: 300 - 1200 nm 分散: 12nm/mm 沟槽密度: 800l/mm 偏差 D: 61.1deg

    使用IV型像差校正单色器光栅,单个凹面光栅将来自入口狭缝的光分散、准直并重新聚焦到出口狭缝上。通过光栅的简单旋转获得波长扫描。这些光栅的凹槽间距是计算机优化的,以产生具有较小值的高质量图像像散和彗差,即使在大数值孔径下。与Czerny-Turner单色仪(配有一面平面光栅、一面准直镜和一面聚焦镜)相比,像差校正单色仪光栅提供了更好的光收集效率和信噪比。

  • 单色仪光栅 522 00 140 衍射光学元件
    美国
    光谱范围: 400 - 1600 nm 分散: 16nm/mm 沟槽密度: 600l/mm 偏差 D: 61.6deg

    使用IV型像差校正单色器光栅,单个凹面光栅将来自入口狭缝的光分散、准直并重新聚焦到出口狭缝上。通过光栅的简单旋转获得波长扫描。这些光栅的凹槽间距是计算机优化的,以产生具有较小值的高质量图像像散和彗差,即使在大数值孔径下。与Czerny-Turner单色仪(配有一面平面光栅、一面准直镜和一面聚焦镜)相比,像差校正单色仪光栅提供了更好的光收集效率和信噪比。

  • 单色仪光栅 522 00 150 衍射光学元件
    美国
    光谱范围: 800 - 3200 nm 分散: 32nm/mm 沟槽密度: 300l/mm 偏差 D: 61.6deg

    使用IV型像差校正单色器光栅,单个凹面光栅将来自入口狭缝的光分散、准直并重新聚焦到出口狭缝上。通过光栅的简单旋转获得波长扫描。这些光栅的凹槽间距是计算机优化的,以产生具有较小值的高质量图像像散和彗差,即使在大数值孔径下。与Czerny-Turner单色仪(配有一面平面光栅、一面准直镜和一面聚焦镜)相比,像差校正单色仪光栅提供了更好的光收集效率和信噪比。

  • 单色仪光栅 522 00 270 衍射光学元件
    美国
    光谱范围: 400 - 2100 nm 分散: 10nm/mm 沟槽密度: 450l/mm 偏差 D: 61.6deg

    使用IV型像差校正单色器光栅,单个凹面光栅将来自入口狭缝的光分散、准直并重新聚焦到出口狭缝上。通过光栅的简单旋转获得波长扫描。这些光栅的凹槽间距是计算机优化的,以产生具有较小值的高质量图像像散和彗差,即使在大数值孔径下。与Czerny-Turner单色仪(配有一面平面光栅、一面准直镜和一面聚焦镜)相比,像差校正单色仪光栅提供了更好的光收集效率和信噪比。

  • 单色仪光栅 522 00 410 衍射光学元件
    美国
    光谱范围: 400 - 800 nm 分散: 0.5nm/mm 沟槽密度: 2000l/mm 偏差 D: 3deg

    使用IV型像差校正单色器光栅,单个凹面光栅将来自入口狭缝的光分散、准直并重新聚焦到出口狭缝上。通过光栅的简单旋转获得波长扫描。这些光栅的凹槽间距是计算机优化的,以产生具有较小值的高质量图像像散和彗差,即使在大数值孔径下。与Czerny-Turner单色仪(配有一面平面光栅、一面准直镜和一面聚焦镜)相比,像差校正单色仪光栅提供了更好的光收集效率和信噪比。