• 零阶四分之一波板266纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板355纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板405纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板488纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板514纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板532纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板633纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板670纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板780纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板 808纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板 830纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶四分之一波板850纳米 偏振光学元件
    美国
    厂商:Ealing Catalog
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Round 尺寸: 25.4mm

    四分之一波片用于将线偏振光束转换为圆偏振光束(反之亦然)。四分之一波片的结构是这样的,即由标记线表示的快轴位于与输入偏振成45°的表面中。输入光束被分解为两个振幅相等但速度不同的分量。四分之一波片的应用包括从线性偏振产生圆偏振或从圆偏振产生线性偏振、椭圆偏振、光泵浦、抑制不想要的反射(当与偏振器结合使用时)和光隔离(当与偏振分束器立方体一起使用时)。半波片的厚度使得相位差为V(零阶)或3V、5V、7V等(多阶)。入射到半波片上的线偏振光束作为线偏振光束出射,但被旋转使得其与光轴的角度是入射光束的两倍。通常使快轴位于与输入偏振成45°的延迟器的表面中。因此,半波片引入了偏振面的90°旋转,伊林零级波片是优选的波片类型。它们对温度、波长、入射角或准直的变化不敏感。15nm的波长偏移将导致大约1%的延迟变化。它们以25.4 nm安装方式提供。

  • 零阶波板 偏振光学元件
    中国大陆
    波形板类型: Zero Order 材料: Quartz 安装: Mounted 形状: Custom 尺寸: 12.7mm

    波片或延迟器是一种改变通过其传播的光波的偏振状态的光学装置。两种常见类型的波片是半波片和四分之一波片。波片由诸如石英的双折射材料构成,其折射率对于通过它的光的不同取向是不同的。波片的行为取决于晶体的厚度、光的波长和折射率的变化。

  • ZnSe RMI立方体光束分流器 分束器
    美国
    分类:分束器
    材料: ZnSe 波长范围: 9000 - 11000 nm 最大光束偏差: 3arcmin

    非偏振板分束器将入射单色光束分成具有特定强度比的反射和透射分量。它们被设计用于需要保持入射光束的偏振特性的应用。该板的一面涂有全介质、非偏振、部分反射涂层,另一面涂有高效率、窄带、抗反射涂层。

  • ZnSe RMI板式分流器 分束器
    美国
    分类:分束器
    基质: Zinc Selenide 波长范围: 9000 - 11000 nm

    非偏振板分束器将入射单色光束分成具有特定强度比的反射和透射分量。它们被设计用于需要保持入射光束的偏振特性的应用。该板的一面涂有全介质、非偏振、部分反射涂层,另一面涂有高效率、窄带、抗反射涂层。

  • 760nm VCSEL;TO 5 封装带TEC; 单模; 偏振锁定 半导体激光器
    波长: 0 nm 光功率: 0 W

    单模 VCSEL 采用 TO 封装外壳,方便使用激光二极管,适合在严苛的环境条件下运行。此外还可进行老化测试,集成的稳压二极管可减少激光组件的静电放电(ESD)。 单模 VCSEL 平台设计用于超低的耗电量和大输出功率。偏振锁定功能在不牺牲功率效率的情况下实现偏振控制。 VCSEL 周围的 TO 封装将电子器件密封在外壳内部。即使是在严苛的环境条件下也不会损坏。 集成有 TEC 的 TO 外壳适合需要大温度窗口或者要求激光二极管具备光谱稳定性的应用。这里可以精确地调节激光温度。

  • 763nmVCSEL;TO 5 封装带TEC; 单模; 偏振锁定 半导体激光器
    波长: 0 nm 光功率: 0 W

    单模 VCSEL 采用 TO 封装外壳,方便使用激光二极管,适合在严苛的环境条件下运行。此外还可进行老化测试,集成的稳压二极管可减少激光组件的静电放电(ESD)。 单模 VCSEL 平台设计用于超低的耗电量和大输出功率。偏振锁定功能在不牺牲功率效率的情况下实现偏振控制。 VCSEL 周围的 TO 封装将电子器件密封在外壳内部。即使是在严苛的环境条件下也不会损坏。 集成有 TEC 的 TO 外壳适合需要大温度窗口或者要求激光二极管具备光谱稳定性的应用。这里可以精确地调节激光温度。

  • 760nm VCSEL;TO 46封装不带TEC;单模;偏振锁定 半导体激光器
    波长: 0 nm 光功率: 0 W

    单模 VCSEL 采用 TO 封装外壳,方便使用激光二极管,适合在严苛的环境条件下运行。此外还可进行老化测试,集成的稳压二极管可减少激光组件的静电放电(ESD)。 单模 VCSEL 平台设计用于超低的耗电量和大输出功率。偏振锁定功能在不牺牲功率效率的情况下实现偏振控制。 VCSEL 周围的 TO 封装将电子器件密封在外壳内部。即使是在严苛的环境条件下也不会损坏。

  • TKS 1064 nm CW SLM PM光纤放大器 光纤放大器
    法国
    分类:光纤放大器
    厂商:3SP Technologies
    输出类型: CW 输入功率: > 5.0 mW 饱和输出功率: 1-15 W

    HED是一款CW交钥匙光纤放大器,可提供高达15 W的输出功率。通过近衍射极限的线偏振光束(M2<1.3)。HED被优化用于低至1kHz的瞬时半峰全宽(FWHM)的单纵模(SLM)激光源的放大。出色的光束质量和功率稳定性使该光纤放大器成为一种多用途工具。我们的专利“注入技术”允许使用高度可靠的大面积激光二极管泵浦,以实现成本效益和免维护操作。全光纤设计保证了放大器的坚固性,无需任何光学部件来对准或稳定。系统的简单集成不需要安装后的服务。HED是广泛科学应用的理想解决方案。

  • TKS 1550 nm CW SLM PM光纤放大器 光纤放大器
    法国
    分类:光纤放大器
    厂商:3SP Technologies
    输出类型: CW 输入功率: > 5.0 mW 饱和输出功率: 1-15 W

    HED是一款CW交钥匙光纤放大器,可提供高达15 W的输出功率。通过近衍射极限的线偏振光束(M2<1.3)。HED被优化用于低至1kHz的瞬时半峰全宽(FWHM)的单纵模(SLM)激光源的放大。出色的光束质量和功率稳定性使该光纤放大器成为一种多用途工具。我们的专利“注入技术”允许使用高度可靠的大面积激光二极管泵浦,以实现成本效益和免维护操作。全光纤设计保证了放大器的坚固性,无需任何光学部件来对准或稳定。系统的简单集成不需要安装后的服务。HED是广泛科学应用的理想解决方案。