-
波长范围: 320 - 1100 nm 决议: 3.0nm 最短扫描时间: 0.008-2sec
PSR-1100(-F)使用光谱演变较小和较轻的VNIR光谱进行无损采样,设计用于现场真正便携的实时测量。SE光谱仪可在各种环境中快速导出精确的反射率、辐射率和辐照度光谱。PSR-1100系列是便携性、性能和耐用性的完美结合。PSR-1100光谱辐射计使用高灵敏度的Si 512元素探测器阵列和固定光栅。该仪器是为方便现场数据采集而开发的,可存储多达2500个光谱。PSR-1100的波长范围为320-1100 nm,精度为±0.5 nm,在600 nm处的分辨率小于3 nm,PSR-1100具有无与伦比的性能,可帮助您加快现场工作速度,并减少与不断变化的环境条件相关的误差。
-
致动器数量: 3 波前倾斜行程: 10um 学生人数: 2.4mm 反光涂层材料: Protected Silver
Mirrorcle Technologies公司的无万向架双轴扫描MEMS反射镜装置基于专有的ARI-MEMS制造技术,该技术较初是通过加州伯克利的亚得里亚海研究所(“ARI”)的研究项目开发的。它们在两个轴上提供非常快速的光束转向,同时需要超低功耗。反射镜将激光束或图像偏转到每个轴上高达32°的光学扫描角度(点对点或准静态模式)以及谐振模式中的更高角度。与体积庞大的基于检流计的光学扫描仪相比,这些设备所需的驱动功率要小几个数量级:驱动反射镜倾斜旋转的静电致动器的连续全速操作消耗的功率小于1mW。Mirrorcle Technologies MEMS反射镜完全由单片单晶硅制成,具有出色的可重复性和可靠性。平坦、光滑的镜面涂有一层具有高宽带反射率的金属薄膜。较小和中等尺寸的反射镜被制造为硅MEMS芯片的集成部分,而较大的反射镜被粘合到致动器上,从而允许定制反射镜尺寸。
-
基底材料: BK7, Supremax 33, Mo, Cu, Si, Metallic, Zerodur, Sapphire, Calcium Fluoride, IR Fused Silica, UV Fused Silica, Fused Silica, Custom 波长范围: 190 - 4000 nm 入射角: 0-50deg 平整度: lambda/20, lambda/10, lambda/8, lambda/6, lambda/4 表面质量: 10-5 scratch-dig, 20-10 scratch-dig, 40-20 scratch-dig, 60-40 scratch-dig
PHOTONCHINA提供各种反射镜,包括激光线反射镜、谐波分离器反射镜、高反射(HR)反射镜、部分反射反射镜和金属镀膜反射镜。可以生产各种矩形、圆形、椭圆形或定制形状的镜子,包括平面、球面、凹面或凸面以及柱面。HR激光线反射镜(HR反射镜)HR激光线反射镜(HR)在特定波长和特定入射角(Aoi)下提供优化的性能,反射镜由基底和多层涂层堆叠组成,有助于在任何设计的入射角下对特定的激光线波长实现非常高的反射率。激光线HR涂层用于外部光束操作应用,即使轻微的损失也是无法忍受的。涂层由电子束蒸发提供,有/没有离子辅助涂层技术。HR宽带反射镜(BBHR反射镜)HR宽带反射镜(BBHR)为宽光谱提供高反射率。这些多层涂层为宽光谱提供了高反射率。因此,它是广泛的多波长激光或白光应用的理想选择。通过离子束溅射(IBS)或电子束蒸发,在有/没有离子辅助涂覆技术的情况下提供涂层。HR介电涂层可在0.19-20μm范围内使用。金属镀膜镜(MC镜)金属镜和部分反射器我公司长期为国内外客户提供金、银、铝、铬、铜等金属高反射和部分反射镀膜镜。PHOTONCHINA金属镀膜反射镜特点:受保护的黄金提供出色的宽带红外高反射率受保护的银在整个可见光和近红外范围内提供比铝更高的反射率保护铝是VIS应用的经济型解决方案UV增强铝在宽范围内提供良好的反射率,主要用于UV应用。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 1000 - 1120 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 240 - 360 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 500 - 1150 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 450 - 700 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。
-
涂层: Multi-layer 入射角: Not Specified 波长范围: 8000 - 12000 nm
抗反射(AR)涂层是应用于透镜和窗口表面以降低反射率的涂层。(适用于紫外线、可见光和红外线)当光入射到两种介质之间的边界上时,一些能量被反射,一些能量被透射。抗反射涂层通过控制来自足够多的界面的反射能量的相位来工作,使得来自所有界面的反射波几乎彼此抵消,从而产生非常低的表面反射率。对于折射率为1.5且吸收可忽略不计的无涂层玻璃,大约92%的光将透过玻璃,大约8%的光将被反射(从每个玻璃/空气表面反射4%)。在多元素系统中,在每个表面损失4%的入射能量会导致显著的总能量损失。例如,十种普通玻璃光学器件的总损耗超过50%。具有较高折射率的光学器件将遭受更大的反射损失。在较高的入射角下,损失也较大。为了防止反射损失,必须在每个表面上施加抗反射涂层。AR涂层用于多种消费和商业应用中。许多光学设备和显示器采用抗反射涂层来减少传输信号的损失或减少眩光。请参见上图中未涂覆的光学玻璃片与一面涂有抗反射涂层的光学玻璃片的示例。纽波特薄膜实验室(Newport Thin Film Laboratory)开发了一系列在紫外、可见和红外波长范围内优化的抗反射涂层。NTFL还可以根据客户的规格设计和沉积定制的抗反射涂层。如果您不确定如何指定您的涂层,我们的涂层工程师将与您合作,以确定满足您需求的较佳设计。NTFL还为聚合物光学器件提供低温抗反射涂层。有关一般类型的抗反射(AR)涂层,如单层抗反射(SLAR)、V型涂层(VAR)、宽带抗反射(BBAR)和双带抗反射涂层的更多信息,请联系我们。