• CryLaS eMOPA 355-100 激光器模块和系统
    德国
    厂商:CryLaS GmbH
    波长: 355nm 平均值功率: 0.1W 重复频率: 0 - 1 kHz 空间模式: 1 脉宽: 1ns

    新的E-MOPA激光器系列基于二极管泵浦的被动调Q Nd:YAG激光器(主振荡器),该激光器由二极管泵浦的光放大器(功率放大器)组合而成。通过这种MOPA技术,与非放大系统相比,可以获得恒定且光学稳定的更高脉冲能量和平均功率。通过使用高纯度非线性晶体,集成倍频和和频转换允许将波长下滚到532、355或266nm。提供脉冲能量高达200µJ、平均功率高达200mW的各种型号。脉冲频率由外部或内部触发,单次触发频率高达1kHz。由于微芯片的设计,在1ns的脉冲长度范围内达到了高达200kW的峰值功率。激光器结构紧凑,坚固耐用,易于集成到仪器和计量设备中。

  • CryLaS eMOPA 532-200 激光器模块和系统
    德国
    厂商:CryLaS GmbH
    波长: 532nm 平均值功率: 0.2W 重复频率: 0 - 1 kHz 空间模式: 1 脉宽: 1ns

    新的E-MOPA激光器系列基于二极管泵浦的被动调Q Nd:YAG激光器(主振荡器),该激光器由二极管泵浦的光放大器(功率放大器)组合而成。通过这种MOPA技术,与非放大系统相比,可以恒定地和光学稳定地获得更高的脉冲能量和平均功率。通过使用高纯度非线性晶体,集成倍频和和频转换允许将波长下滚到532、355或266nm。提供脉冲能量高达200µJ、平均功率高达200mW的各种型号。脉冲频率由外部或内部触发,单次触发频率高达1kHz。由于微芯片的设计,在1ns的脉冲长度范围内达到了高达200kW的峰值功率。激光器结构紧凑,坚固耐用,易于集成到仪器和计量设备中。

  • CRYSTECH KTP晶体 晶体
    中国大陆
    分类:晶体
    厂商:CRYSTECH Inc.
    水晶类型: KTP (KTiOPO4) 相位测量类型: Type I, Type II 安装: Mounted, Unmounted 宽度: 2-20mm 高度: 2-20mm

    磷酸钛氧钾(KTiOO3或KTP)是一种优良的非线性光学材料,适用于许多光学系统。它具有较高的非线性系数和稳定的物理性能。它较受欢迎的应用是作为倍频器,利用Nd:YAG激光器的1064nm输出产生532nm激光。KTP-APOS的特性也使其在电光调制、光参量产生等方面具有优势。

  • CRYSTECH Nd:YAG晶体 激光晶体
    中国大陆
    分类:激光晶体
    厂商:CRYSTECH Inc.
    水晶类型: Nd:YAG 水晶直径: 3-20mm 水晶长度: 1-180mm AR 涂层: One side, Both sides, Uncoated

    掺钕钇铝石榴石(Nd:YAG)晶体是性能较好的稀土石榴石材料,它具有四能级结构,可以在脉冲和连续模式下低阈值工作。是研发、医疗、工业、军工等客户采用较成熟、应用较广泛的固体激光材料。Nd:YAG晶体广泛应用于各种固体激光器系统中,如连续倍频激光器、高能调Q脉冲激光器等。与其他激光晶体相比,其荧光寿命是Nd:YVO4的两倍,热导率也更好。

  • DYE-FD-08 CW 染料激光器 激光器模块和系统
    美国
    厂商:HT Laser
    调谐范围: 520 - 700 nm 极化: Unspecified

    DYE-FD-08型腔内倍频染料激光器是物理和纳米技术领域光谱研究的较佳选择。在Dye-FD-08中使用的染料具有520至700nm(基波波长)和260至350nm(二次谐波波长)的工作光谱范围。根据所使用的光学元件,发射线的宽度为0.05-0.01nm。当抽运功率为10W时,基波输出功率达到1.5W,二次谐波输出功率超过200mW。型号TIS-SF-08使用线性谐振器配置,具有用于非线性晶体的附加束腰。这就是二次谐波(SH)辐射从非线性晶体的两端发射的原因。为了在非线性晶体的一侧上收集所有SH辐射,使用反射基频辐射和SH辐射两者的分色镜(M4)。在晶体的另一侧安装另一分色镜(M5),但是该分色镜仅对于基频辐射是全反射的,对于SH辐射具有大的透射率(T80-85%)。通过该反射镜,从腔中提取SH输出,该腔将基波辐射锁定在内部。

  • 高效非线性材料和偏振元件 晶体
    美国
    分类:晶体
    水晶类型: LBO (Lithium Triborate), BIBO (BiB3O6) 相位测量类型: Not Applicable 安装: Unmounted 宽度: 20mm 高度: 20mm

    KTP或磷酸钛氧钾(KTiOPO4)具有独特的性质:高非线性系数、高损伤阈值和不吸湿性,使其成为要求苛刻的激光应用的理想选择,如倍频(1064/532nm)OPO(1064/1540nm)和波导(红外到紫外)。DMI提供顶部晶种溶液和水热晶体生长材料。选择由激光流畅性驱动。孔径可为2x2至20x20mm,长度可达40mm。

  • EKSMA 红外线非线性晶体GaSe - 100 晶体
    美国
    分类:晶体
    水晶类型: GaSe 相位测量类型: Type I, Type II 安装: Unmounted 平整度: Not Available 表面质量: Not Available

    GaSe在0.65和18μm处有带边,已成功地用于Co_2激光的有效倍频,脉冲Co_2和化学DF激光(λ=2.36μm)辐射的倍频;Co和CO2激光辐射到可见范围的上转换;通过钕和红外染料激光或(f)-中心激光脉冲的差频混合产生红外脉冲;OPG光产生在3.5–18μm范围内;100–1600μm范围内的高效太赫兹产生。由于材料结构(沿(001)面劈裂)限制了应用领域,因此不可能切割特定相位匹配角度的晶体。

  • EKSMA KDP 磷酸二氘代钾晶体 - KDP-402 晶体
    美国
    分类:晶体
    水晶类型: KD*P (Potassium Dideuterium Phosphate) 相位测量类型: Type I, Type II 安装: Unmounted 宽度: 15mm 高度: 15mm

    KDP薄晶体用于钛宝石激光辐射的二次谐波产生或单次自相关器中的脉冲宽度测量。与BBO晶体相比,KDP晶体在800nm倍频时具有约2.4倍的光谱接受度和相应较小的群速度失配,这有时是飞秒宽光谱脉冲的关键参数。

  • EKSMA三硼酸锂晶体LBO - 402 晶体
    美国
    分类:晶体
    水晶类型: LBO (Lithium Triborate) 相位测量类型: Type I, Type II 安装: Mounted, Unmounted 宽度: 3mm 高度: 3mm

    LBO非常适合于各种非线性光学应用:高峰值功率脉冲掺钕、钛宝石和染料激光器的倍频和三倍频;类型1和类型2相位匹配的光参量振荡器(OPO)连续和准连续辐射频率变换的非临界相位匹配

  • EKSMA三硼酸锂晶体LBO - 404 晶体
    美国
    分类:晶体
    水晶类型: LBO (Lithium Triborate) 相位测量类型: Type I, Type II 安装: Mounted, Unmounted 宽度: 3mm 高度: 3mm

    LBO非常适合于各种非线性光学应用:高峰值功率脉冲掺钕、钛宝石和染料激光器的倍频和三倍频;类型1和类型2相位匹配的光参量振荡器(OPO)连续和准连续辐射频率变换的非临界相位匹配

  • EKSMA三硼酸锂晶体LBO - 406 晶体
    美国
    分类:晶体
    水晶类型: BBO (Beta Barium Borate) 相位测量类型: Type I, Type II 安装: Mounted, Unmounted 宽度: 3mm 高度: 3mm

    LBO非常适合于各种非线性光学应用:高峰值功率脉冲掺钕、钛宝石和染料激光器的倍频和三倍频;类型1和类型2相位匹配的光参量振荡器(OPO)连续和准连续辐射频率变换的非临界相位匹配

  • EKSMA三硼酸锂晶体LBO - 408 晶体
    美国
    分类:晶体
    水晶类型: LBO (Lithium Triborate) 相位测量类型: Type I, Type II 安装: Mounted, Unmounted 宽度: 5mm 高度: 5mm

    LBO非常适合于各种非线性光学应用:高峰值功率脉冲掺钕、钛宝石和染料激光器的倍频和三倍频;类型1和类型2相位匹配的光参量振荡器(OPO)连续和准连续辐射频率变换的非临界相位匹配

  • FDL-1010-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 1.010um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-1060-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 1.060um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000mW的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-765-1W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.765um 输出功率: 1000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达1000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-765-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.765um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-780-1W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.780um 输出功率: 1000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-780-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.780um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-785-1W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.785um 输出功率: 1000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-785-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.785um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。