• FC-LDM-30W 脉冲二极管激光器 半导体激光器
    德国
    厂商:Absee-Laser
    输出功率: 30W 脉宽: 50 - 100 ns 中心波长附近的调谐范围: Not Applicable

    泵浦激光二极管安装在带有T80、J40或J80电源的光谱物理激光系统的冷却模块中与光谱物理P/N 0129-0390兼容。

  • FC-UPC单模光纤插头式衰减器1310和1550nm 1.0dB 光纤衰减器
    中国大陆
    分类:光纤衰减器
    厂商:Go4Fiber Ltd
    通道数量: Single Channel 工作波长范围: 1310 - 1550 nm 动态衰减范围: 1dB 插入损耗: 65dB 反射损耗: 55dB

    采用先进的衰减光纤技术,GO4Fiber插入式定值衰减器具有高功率承受能力和低背反射,适用于高速数字传输和模拟应用。

  • FC/B连接器 FC连接器在布鲁斯特角度 光纤耦合器
    美国
    分类:光纤耦合器
    厂商:IRflex Corp

    硫系As2S3和As2Se3玻璃光纤具有较宽的传输范围(1.5μm~6.5μm和1.5μm~10μm)和较低的传输损耗,具有较高的非线性系数、较小的负折射率温度变化(DN/DT)、良好的功率容量和化学稳定性,可用于制作SMA、FC/PC和FC/APC等传输电缆。然而,由于硫系玻璃的高折射率(As2S3约为2.4,As2Se3约为2.7),光纤在输入和输出面会发生较大的菲涅尔反射(17%和21%)。对于采用SMA或FC/PC终端的电缆,输入端的这种反射可能会对激光器或其他光学元件造成不良影响。对于需要消除这种反射的应用,必须使用隔离器。在输入面采用8°角的FC/APC终端并不能缓解背向反射问题。然而,由于这些反射造成的功率损耗,上述终端仍将经历较低的传输功率。Irflex的FC/B®终端允许输入光束在输入面几乎完全传输,这意味着除了消除不需要的背向反射外,更多的功率被耦合到光纤中。我们的FC/B®连接器利用透射材料的布儒斯特角特性,在输入面实现了几乎完全的透射和无反射。以布儒斯特角入射到材料上的光对于其电场平行于入射平面的光将不会经历反射;这被称为TM或P极化。具有TE或S偏振的光仍将经历反射;因此,该角度也被称为偏振角。

  • FCB-ER8300 4K摄像机座 科学和工业相机
    法国
    厂商:Sony Europe
    传感器类型: CMOS # 像素(宽度): 3840 # 像素(高度): 2160 全帧速率: 30fps 位深度: 8bit

    新的FCB-ER8300块相机集成了1/2.3型Exmor R传感器,能够在高达30p的4K分辨率(3,840 X 2,160,QFHD)。该相机采用高品质12倍光学变焦镜头,当与超级分辨率变焦相结合时,可在高达20倍变焦时保持4K分辨率,在紧凑的外形中提供增强的4K可视性。这款相机还继承了索尼广受欢迎的FCB系列相机的一些独特功能,如自动ICR、隐私区域遮罩、降噪和可见度增强,支持在具有挑战性的照明条件下使用。这些出色的功能和优势使FCB-ER8300非常适合要求苛刻的广域监控应用,如运输、体育赛事监控、视频会议等。

  • FCB-ER8550 新款4K 20倍彩色摄像机座,带外部同步器 科学和工业相机
    法国
    厂商:Sony Europe
    传感器类型: CMOS # 像素(宽度): 3840 # 像素(高度): 2160 全帧速率: 30fps 位深度: 8bit

    推出我们FCB系列的较新版本:FCB-ER8550与FCB-ER8530一样,在方便和兼容的外形中重置了画质和性能,为各种空间和外形非常重要的应用带来了4K可能性。FBC-ER8550配备了较新的索尼CMOS传感器技术,是备受推崇的FCB-ER系列的较新版本,该系列首次推出时推出了FBC-ER8300。FCB-ER8550提供30fps的4K分辨率和集成的20倍光学变焦镜头,但包括外部同步功能。外形尺寸几乎与FCB-EV7520相同,因此提供了一种方便的解决方案来迁移到4K,而无需重新设计您的较终解决方案。FCB-ER8550的外部同步功能为部署多个摄像机的用户提供了额外的好处,例如在广播环境中或将FCB与其他附件(如红外光或热感摄像机)一起使用,这在视频监控行业中很常见。FCB-ER8550继承了索尼全球知名的FCB系列的众多功能,包括VISCA推荐协议、Auto-ICR和图像稳定。这些市场领先的功能适用于各种要求苛刻的应用。

  • FCB-ES8230新型4K高品质12倍彩色摄像机组 科学和工业相机
    法国
    厂商:Sony Europe
    传感器类型: CMOS # 像素(宽度): 3840 # 像素(高度): 2160 位深度: 8bit

    新的FCB-ES8230代表了高质量和“同类较佳”图像的新途径,具有令人惊叹的4K清晰度,这要归功于索尼1型Exmor R CMOS传感器的组合。高品质镜头和索尼独特的ISP引擎。FCB-ES8230是我们不断扩大的4K工业相机系列的较新版本,是对较近推出的FCB-ER8550和FCB-ER8530 4K相机模块的补充,该产品主要针对广播/视频行业,具有薄景深等特殊功能,并首次采用FCB技术,结合了光学图像稳定技术,可提供丰富、高品质和稳定的图像。FCB-ES8230提供每秒30帧的4K分辨率以及集成的12倍光学变焦镜头,但在4K质量下具有高达18倍的超级分辨率变焦。还包括12倍的额外数码变焦。FCB-ES8230继承了索尼世界知名的FCB系列的众多功能,包括VISCA命令协议、自动ICR和各种曝光、白平衡和聚焦控制功能。这些市场领先的功能适用于各种要求苛刻的应用。

  • FCC-2-λ光纤准直器 准直器
    美国
    分类:准直器

    扭转式准直器快速连接到FC或SMA连接器光纤电缆,以产生准直光束。扭转式准直器包含一个微透镜,专为衍射限制性能而设计。镜头的两个表面都有抗反射涂层,峰值波长的透射率>98%。通过简单的手动调节NE-螺纹弹簧加载的聚焦筒,可以实现不同波长的焦点补偿。

  • FDL-1010-2W-TA 用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 1.010um 输出功率: 2000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近2000W的衍射极限功率值。这种设置称为MOPA(主振荡器功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPA装置的应用实例是光学冷却、高分辨率吸收的光阱或拉曼光谱。

  • FDL-1010-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 1.010um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-1060-2W-TA 用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 1.060um 输出功率: 2000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近2000W的衍射极限功率值。这种设置称为MOPA(主振荡器功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPA装置的应用实例是光学冷却、高分辨率吸收的光阱或拉曼光谱。

  • FDL-1060-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 1.060um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000mW的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-765-1W-TA 用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 0.765um 输出功率: 1000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近1000W的衍射极限功率值。这种设置称为MOPA(主Oszillator功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPaseTUP的应用实例是光学冷却、高分辨率吸收的光学陷阱或拉曼光谱。

  • FDL-765-1W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.765um 输出功率: 1000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达1000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-765-2W-TA 用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 0.765um 输出功率: 2000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近2000W的衍射极限功率值。这种设置称为MOPA(主振荡器功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPA装置的应用实例是光学冷却、高分辨率吸收的光阱或拉曼光谱。

  • FDL-765-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.765um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-780-1W-TA 用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 0.780um 输出功率: 1000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近1000W的衍射极限功率值。这种设置称为MOPA(主振荡器功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPA装置的应用实例是光学冷却、高分辨率吸收的光阱或拉曼光谱。

  • FDL-780-1W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.780um 输出功率: 1000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-780-2W-TA用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 0.780um 输出功率: 2000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近2000W的衍射极限功率值。这种设置称为MOPA(主振荡器功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPA装置的应用实例是光学冷却、高分辨率吸收的光阱或拉曼光谱。

  • FDL-780-2W-TAL 用于外腔设置的锥形放大器 半导体激光器
    德国
    中心波长: 0.780um 输出功率: 2000mW

    GaAs基锥形放大器用于极端谐振器配置中,以将高达2000W的近衍射极限输出功率与小谱线宽度和高边模抑制比相结合。它们的后端面具有小于0.01%的高抗反射涂层,以保证与光栅的良好耦合。前表面具有抗反射涂层,以保护芯片不受背向反射的影响。典型的应用是高分辨率吸收光谱或非线性倍频。

  • FDL-785-1W-TA 用于MOPA的锥形放大器 半导体激光器
    德国
    中心波长: 0.785um 输出功率: 1000mW

    GaAs基锥形放大器用于现有种子激光器的放大。10mW和30mW之间的种子功率可以被放大到接近1000W的衍射极限功率值。这种设置称为MOPA(主振荡器功率放大器)。后端面和前端面都具有小于0.01%的抗反射涂层,以避免放大器芯片本身的激光作用。具有锥形放大器的MOPA装置的应用实例是光学冷却、高分辨率吸收的光阱或拉曼光谱。