-
中心波长范围: 1000 - 1800 nm FBG 长度: From 1mm to 20mm, 15 mm, 12 mm, 10 mm, 7 mm, 5 mm, 3 mm, 1 mm, Custom 反射率: 3 - 90%, 10 - 50%, 10 - 90%, 30 - 70%, 30 - 99%, >30%, >50%, >70%, >90%, >1%,<=1% 反射率: From 1% to 99,99%%
Idil Fibers Optiques是一家定制光纤布拉格光栅(FBG)的全球供应商,适用于大多数无源和有源应用。IDIL Fibers Optiques设计和制造各种光纤布拉格光栅(FBG)外形,包括均匀FBG、啁啾FBG、闪耀FBG、FBG阵列和FBG封装(包括裸光纤FBG和无热FBG)。我们的产品覆盖了广泛的波长范围:从1000纳米到1800纳米。IDIL可以在各种类型的光纤上工作,并提供各种类型的连接器。我们的团队计算并设计了FBG的轮廓。我们还表征并实现了多路复用FBG(CF)。相反),在同一光纤上有几个光栅(从1到大约20个),这些光栅可以接近几毫米或分开几公里。我们的FBG在光纤激光器(高功率和低噪声激光器)、高功率放大器、传感器(声学、干涉测量、光谱学)和电信(DWDM)等领域具有广泛的应用。https://www.idil-fibres-optiques.com/product/fiber-bragg-gratings-2/
-
中心波长范围: 1000 - 1800 nm FBG 长度: From 1mm to 20mm, 15 mm, 12 mm, 10 mm, 7 mm, 5 mm, 3 mm, 1 mm, Custom 反射率: 3 - 90%, 10 - 50%, 10 - 90%, 30 - 70%, 30 - 99%, >30%, >50%, >70%, >90%, >1%,<=1%
IDIL Fibers Optiques提供根据客户要求设计的各种光纤布拉格光栅(FBG)。IDIL光纤可通过单模、多模和保偏光纤工作,并提供各种类型的连接器。此外,我们还计算和设计了FBG的轮廓。我们还表征并实现了在同一光纤上具有多个光栅(从一个到大约二十个)的复用FBG(CF相反),这些光栅可以接近几毫米或相隔几公里。较后,我们提供无热,小尺寸和重量包装。我们的FBG在光学传感器(温度、应变、压力等)领域有着广泛的应用。.我们的技术是飞机、建筑物和水坝结构健康监测的理想选择。提高涡轮机和工业设备的效率,检测隧道和发电厂内的不稳定性等。https://www.idil-fibres-optiques.com/product/fiber-bragg-gratings/
-
FIR 分子: CH3OH 激光波长: 118.8um 平均功率: 150mW
FIRL100型的CO2泵浦激光器和FIR激光器都安装在一个集成结构中,该结构将高效的光泵浦FIR系统结合到一个紧凑的单元中。激光器和耦合光学器件安装在5巴殷钢杆框架内,具有出色的热稳定性和机械稳定性。CO2部分在9.1μm和10.9μm之间提供80条线,并具有在较强线上提供超过50W的流动气体单放电管。模式性能(M2<1.25)通过管的内部轮廓和高质量光学的使用来保证。谐振器设计基于具有衍射光栅、两个ZnSe Brewster窗口和压电陶瓷安装的ZnSe输出耦合器的成熟PL5激光器。CO2激光器输出通过两个转向镜和ZnSe聚焦透镜耦合到FIR激光器中。通过精密的双位置滑动反射镜机构,可以访问用于红外实验的CO2辐射束诊断。
-
FIR 分子: CH2F2 激光波长: 184.3um 平均功率: 150mW
FIRL100型的CO2泵浦激光器和FIR激光器都安装在一个集成结构中,该结构将高效的光泵浦FIR系统结合到一个紧凑的单元中。激光器和耦合光学器件安装在5巴殷钢杆框架内,具有出色的热稳定性和机械稳定性。CO2部分在9.1μm和10.9μm之间提供80条线,并具有在较强线上提供超过50W的流动气体单放电管。模式性能(M2<1.25)通过管的内部轮廓和高质量光学的使用来保证。谐振器设计基于具有衍射光栅、两个ZnSe Brewster窗口和压电陶瓷安装的ZnSe输出耦合器的成熟PL5激光器。CO2激光器输出通过两个转向镜和ZnSe聚焦透镜耦合到FIR激光器中。通过精密的双位置滑动反射镜机构,可以访问用于红外实验的CO2辐射束诊断。
-
FIR 分子: HCOOH 激光波长: 432.6um 平均功率: 30mW
FIRL100型的CO2泵浦激光器和FIR激光器都安装在一个集成结构中,将一个高效的光泵浦FIR系统集成到一个紧凑的单元中。激光器和耦合光学器件安装在5巴殷钢杆框架内,具有出色的热稳定性和机械稳定性。CO2部分在9.1μm和10.9μm之间提供80条线,并具有在较强线上提供超过50W的流动气体单放电管。模式性能(M2<1.25)通过管的内部轮廓和高质量光学的使用来保证。谐振器设计基于具有衍射光栅、两个ZnSe Brewster窗口和压电陶瓷安装的ZnSe输出耦合器的成熟PL5激光器。CO2激光器输出通过两个转向镜和ZnSe聚焦透镜耦合到FIR激光器中。通过精密的双位置滑动反射镜机构,可以访问用于红外实验的CO2辐射束诊断。
-
FIR 分子: HCOOH 激光波长: 513.0um 平均功率: 10mW
FIRL100型的CO2泵浦激光器和FIR激光器都安装在一个集成结构中,该结构将高效的光泵浦FIR系统结合到一个紧凑的单元中。激光器和耦合光学器件安装在5巴殷钢杆框架内,具有出色的热稳定性和机械稳定性。CO2部分在9.1μm和10.9μm之间提供80条线,并具有在较强线上提供超过50W的流动气体单放电管。模式性能(M2<1.25)通过管的内部轮廓和高质量光学的使用来保证。谐振器设计基于具有衍射光栅、两个ZnSe Brewster窗口和压电陶瓷安装的ZnSe输出耦合器的成熟PL5激光器。CO2激光器输出通过两个转向镜和ZnSe聚焦透镜耦合到FIR激光器中。通过精密的双位置滑动反射镜机构,可以访问用于红外实验的CO2辐射束诊断。
-
FIR 分子: CH3OH 激光波长: 96.5um 平均功率: 60mW
FIRL100型的CO2泵浦激光器和FIR激光器都安装在一个集成结构中,将一个高效的光泵浦FIR系统集成到一个紧凑的单元中。激光器和耦合光学器件安装在5巴殷钢棒框架内,具有出色的热稳定性和机械稳定性。CO2部分在9.1μm和10.9μm之间提供80条线,并具有在较强线上提供超过50W的流动气体单放电管。模式性能(M2<1.25)通过管的内部轮廓和高质量光学的使用来保证。谐振器设计基于具有衍射光栅、两个ZnSe Brewster窗口和压电陶瓷安装的ZnSe输出耦合器的成熟PL5激光器。CO2激光器输出通过两个转向镜和ZnSe聚焦透镜耦合到FIR激光器中。通过精密的双位置滑动反射镜机构,可以访问用于红外实验的CO2辐射束诊断。
-
分散: 8nm/mm 波长范围: 200 - 400 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 600l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 16nm/mm 波长范围: 400 - 800 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 300l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 24nm/mm 波长范围: 200 - 800 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 200l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 36nm/mm 波长范围: 300 - 1170 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 138l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。
-
分散: 40nm/mm 波长范围: 200 - 1200 nm 频谱长度: 25mm F/Number: 3.2 沟槽密度: 120l/mm
IV型像差校正平场和成像光栅设计用于将光谱聚焦到平面上,使其非常适合与线性或2-D阵列探测器一起使用。这些光栅是用既不等距也不平行的凹槽制成的,并且经过计算机优化以在检测器平面上形成入口狭缝的近乎完美的图像。由于它们的大光学数值孔径和像差校正,这些IV型像差校正了平场成像光栅提供比传统的I型罗兰圆形凹面光栅好得多的光收集效率和信噪比。当使用诸如CCD的区域检测器时,通常可以将多个源聚焦到入口狭缝上,并独立地评估来自每个源的光谱。这些“成像光栅”几乎没有像散,因此只需要一个固定的光学元件来构建成像光谱仪。